

Modèle : 2190D

Oscilloscope numérique 100 MHz

Manuel d'utilisation

Prescriptions de sécurité

Les mesures de sécurité suivantes s'appliquent aussi bien au personnel d'exploitation qu'au personnel de maintenance et doivent être respectées durant toutes les étapes de fonctionnement, de service et de réparation de cet instrument

AVERTISSEMENT

Avant de mettre en marche l'appareil :

- Veuillez prendre connaissance des mesures de sécurité ainsi que des informations sur le fonctionnement du produit.
- Respectez toutes les prescriptions de sécurité énoncées dans le manuel.
- Assurez-vous que le sélecteur de tension connecté au cordon d'alimentation d'entrée est branché sur une ligne de tension adéquate. Brancher l'appareil sur une ligne de tension non appropriée annulera la garantie.
- Connectez tous les câbles à l'appareil après sa mise en route.
- N'utilisez pas l'appareil pour d'autres applications que celles indiquées par ce manuel ou par BK Precision.

Le non respect de ces précautions ou des avertissements mentionnés dans ce manuel va à l'encontre des standards de sécurité de la conception, de la fabrication et de l'usage attendu de cet instrument. BK Precision rejette toute responsabilité en cas de non respect du client face à ces conditions.

Les catégories d'installation

La norme IEC 61010 définit les catégories d'installations de sécurité comme indiquant la quantité d'électricité disponible et les impulsions de tension qui sont susceptibles de se produire dans les conducteurs électriques associés à ces catégories d'installations. La catégorie d'installation est indiquée par des chiffres romains : I, II, III ou IV. Cette catégorie d'installation est également accompagnée par une tension maximale du circuit qui doit être testé, et qui définit les impulsions de tension et les distances d'isolement. Ces catégories sont :

Catégorie I (CAT I): Instruments de mesure dont les entrées de mesures ne sont pas destinées à être connectées au secteur. Les tensions dans l'environnement sont typiquement issues d'un transformateur ou d'une batterie à énergie limitée.

Catégorie II (CAT II): Instruments de mesure dont les entrées de mesures sont destinées à être connectées au secteur domestique (prise murale) ou destinées à être connectées à une source de même type. Par exemple, ces environnements de mesure sont des outils portatifs et des appareils ménagers.

Catégorie III (CAT III): Instruments de mesure dont les entrées de mesures sont destinées à être connectées à l'alimentation secteur d'un bâtiment. Par exemple, les mesures dans un panneau de disjoncteurs d'un bâtiment ou le câblage électrique de moteurs installés de façon permanente.

Catégorie IV (CAT IV): Instruments de mesure dont les entrées de mesures sont destinées à être connectées à l'alimentation primaire fournissant un bâtiment ou un autre câblage extérieur.

AVERTISSEMENT

N'utilisez pas l'instrument dans un environnement électrique ayant une catégorie d'installation plus élevée que ce qui est spécifié dans le manuel pour cet instrument.

AVERTISSEMENT

Vous devez vous assurer que chaque accessoire utilisé avec cet instrument a une catégorie d'installation égale ou supérieure à celle de cet appareil pour maintenir celle-ci. Dans le cas contraire, la catégorie d'installation du système de mesure sera plus basse.

Energie électrique

Cet instrument est supposé être alimenté par une tension secteur de CATEGORY II. Les principales sources d'énergie sont en 120V RMS ou 240 V RMS. N'utilisez que le cordon d'alimentation fourni pour l'instrument et assurez-vous qu'il est autorisé dans votre pays.

Mise à la terre de l'appareil

AVERTISSEMENT

Pour minimiser les risques d'électrocution, le châssis de l'instrument ainsi que son boîtier doivent être reliés à une terre électrique. Cet appareil est mis à la terre par la prise de terre de l'alimentation et par un cordon secteur à trois conducteurs. Le câble d'alimentation doit être connecté à une prise électrique 3 pôles. La prise d'alimentation et le connecteur respectent les normes de sécurité IEC.

AVERTISSEMENT

Ne changez pas la mise à la terre de l'appareil. Sans la mise à la terre, tous les éléments conducteurs accessibles (y compris les boutons de contrôle) pourraient provoquer un choc électrique. Si vous n'utilisez pas prise électrique avec mise à la terre ainsi qu'un câble électrique à trois conducteurs recommandé, vous pourriez être blessé ou mourir.

AVERTISSEMENT

Sauf indication contraire, une mise à la terre sur le panneau avant ou arrière de l'appareil n'est donnée qu'à titre indicatif et n'est pas soumise à une mesure de sécurité.

Ne pas se servir de l'instrument en présence d'une atmosphère explosive ou inflammable

AVERTISSEMENT

Ne pas se servir de l'instrument en présence de gaz ou d'émanations inflammables, de fumées ou de fines particules divisées.

AVERTISSEMENT

L'instrument est conçu pour être utilisé dans des environnements d'intérieur type bureau. Ne vous servez pas de l'appareil

- En présence d'émanations nocives, corrosives, ou inflammables mais aussi de gaz, vapeurs, produits chimiques ou de particules fines.
- Avec un taux d'humidité relatif supérieur à celui des spécifications de cet instrument.
- Dans les environnements où il y a un risque qu'un liquide se renverse sur l'instrument ou bien qu'un liquide se condense à l'intérieur de celui-ci.
- Dans des températures dépassant le niveau indiqué pour l'utilisation du produit.
- Dans des pressions atmosphériques hors des limites d'altitudes indiquées pour l'utilisation de l'appareil, là où le gaz environnant n'est plus de l'air.
- Dans les environnements où la circulation d'air se fait difficilement même si la température est dans les spécifications.
- En plein soleil.

ATTENTION

Cet instrument est supposé être utilisé avec un degré de pollution intérieur de 2. Sa plage de température de fonctionnement est comprise entre 0°C et 40°C et l'humidité pour un fonctionnement normal est \leq 85% avec une

température de 40°C sans aucune condensation. Les mesures effectuées par cet instrument peuvent être en dehors des spécifications si l'appareil est utilisé dans des environnements qui ne sont pas de type bureau. Des environnements comme des changements rapides de températures ou d'humidité, d'ensoleillement, de vibrations et ou de chocs mécaniques, de bruits acoustiques, de bruits électriques, de forts champs électriques ou magnétiques ne sont pas de type bureau.

N'utilisez pas l'instrument s'il est endommagé

AVERTISSEMENT

Si l'instrument est endommagé ou semble l'être, ou si un liquide, produit chimique ou toute autre substance submerge l'instrument ou entre à l'intérieur de ce dernier, enlevez le cordon d'alimentation, mettez et indiquez l'instrument comme étant hors service, et retournez-le à votre distributeur. Veuillez indiquer à BK Precision si le produit est contaminé.

Nettoyer l'instrument seulement comme indiqué dans le manuel

AVERTISSEMENT

Ne nettoyez pas l'instrument, ses interrupteurs ou ses bornes avec des produits abrasifs, des lubrifiants, des solvants, des acides ou tout autre produit chimique du même type. Nettoyez-le seulement avec un chiffon doux et sec ou bien comme indiqué dans ce manuel.

Il ne convient pas d'utiliser cet instrument à d'autres fins que celles qui sont indiquées

AVERTISSEMENT

L'instrument ne doit pas être utilisé en contact avec le corps humain et il ne convient pas de l'utiliser dans des dispositifs de survie.

Ne pas toucher les circuits électroniques de l'appareil

AVERTISSEMENT

La coque de l'instrument ne doit jamais être retirée par le personnel d'exploitation. Le remplacement de composants et les réglages internes doivent toujours être effectués par du personnel qualifié du service de maintenance qui est conscient des risques d'électrocution encourus lorsque les coques et les protections de l'instrument sont retirées. Sous certaines conditions, même si le câble d'alimentation est débranché, certaines tensions dangereuses peuvent subsister lorsque les coques sont retirées. Avant de toucher une quelquonque partie interne de l'instrument et pour éviter tout risque de blessure, vous devez toujours déconnecter le cordon d'alimentation de l'instrument, déconnecter toutes les autres connexions (par exemple les câbles d'essai, les câbles d'interface de l'ordinateur etc), décharger tous les circuits et vous assurer qu'il n'y ai pas de tensions dangereuses présentes dans aucun conducteur en prenant des mesures avec un appareil de détection de tensions fonctionnant correctement. Vérifiez que l'appareil de détection de tension fonctionne bien avant et après les mesures en le testant avec des sources de tensions connues et testez-le avec les tensions DC et AC. Ne tentez jamais d'effectuer des réglages internes sans qu'une personne qualifiée capable de prodiguer les gestes de premiers secours et de réanimation ne soit présente.

AVERTISSEMENT

N'introduisez pas d'objets dans les ouvertures d'aérations ou dans les autres ouvertures de l'instrument.

AVERTISSEMENT

Des tensions dangereuses peuvent être présentes dans des zones insoupçonnées du circuit testé lorsqu'une condition de défaut est présente sur le circuit.

Entretien

ATTENTION

N'installez jamais de pièces de substitution et ne procédez jamais à des modifications non autorisées de l'appareil. Procédez au renvoi de l'appareil chez votre distributeur pour ajustage ou réparation afin d'assurer le maintien des dispositifs de sécurité.

Ventilateurs

ATTENTION

Cet instrument contient un ou plusieurs ventilateurs. Une utilisation en toute sécurité de l'instrument exige que l'entrée d'air ainsi que les orifices d'aération pour ces ventilateurs ne doivent ni être bloqués ni être obstrués de poussière ou d'autres débris qui pourraient réduire la circulation de l'air. Laissez au moins 25 mm d'espace autour de chaque côté de l'instrument qui dispose d'entrées d'air et d'orifices d'échappement d'air. Si l'instrument est monté dans un rack, mettre les dispositifs de puissance au dessus de l'instrument pour réduire les effets de la température sur l'oscilloscope. Arrêtez d'utilisez l'instrument si vous n'êtes pas en mesure de vérifier que les ventilateurs fonctionnent (certains ventilateurs peuvent avoir des cycles de fonctionnement intermittents). N'insérez aucun objet à l'entrée ou à la sortie du ventilateur.

Pour continuer à utiliser l'instrument en toute sécurité

- Ne placez aucun objet lourd sur l'instrument
- N'obstruez pas le passage de l'air de refroidissement de l'appareil
- Ne placez pas un fer à souder chaud sur l'instrument
- Ne tirer pas l'instrument par son câble d'alimentation, par sa sonde ou par sa connexion d'essai
- Ne déplacez pas l'instrument lorsqu'une sonde est connectée à un circuit destiné à être testé

Déclarations de conformité

Elimination des vieux équipements électriques et électroniques (Applicable dans tout les pays de l'union européenne ainsi que dans les pays européens disposant d'un système de tri sélectif)

Ce produit est règlementé par la Directive 2002/96/CE du parlement européen et du Conseil de l'Union européenne sur les déchets d'équipement électriques et électroniques, et pour les pays ayant adopté cette Directive, il est signalé comme étant placé sur le marché après le 13 août 2005 et ne doit pas être éliminé comme un déchet non trié. Pour vous débarrasser de ce produit, veuillez faire appel à vos services de collecte des DEEE et observer toutes les obligations en vigueur.

Symboles de sécurité

\land	Ce symbole indique une mise en garde pour prévenir des électrocutions ou de blessures et empêcher d'endommager l'instrument	
\square	Risque d'électrocution	
\sim	Courant alternatif	
\longrightarrow	Terre du châssis	
<u> </u>	Connexion de terre	

On (Allumé). Position du bouton d'allur lorsque l'instrument est en marche		
Off (Eteint). Position du bouton d'al lorsque l'instrument est éteint		
Ċ	Off (Tension). Interrupteur principal AC pour la connexion et la déconnection situé en haut de l'instrument.	
ATTENTION	ATTENTION met en garde contre une situation d'électrocution qui, si elle n'est pas évitée, provoquera une blessure mineure ou modérée.	
<u>AVERTISSEMENT</u>	AVERTISSEMENT met en garde contre une situation d'électrocution qui, si elle n'est pas évitée, pourrait provoquer la mort ou une blessure grave.	
	DANGER met en garde contre une situation d'électrocution qui, si elle n'est pas évitée, provoquera la mort ou une blessure grave.	

Table des matières

Pr	escript	ions de sécurité	i
	Déclara Symbo	ations de conformité les de sécurité	ix ix
1	Info	rmation générales	14
	1.1 1.2 1.3 Desc 1.4 Desc 1.5	Synthèse du produit Contenu de la boîte Panneau avant cription du panneau avant Panneau arrière cription du panneau arrière Informations affichées	14 14 15 16 16 17 18
2	Desc Dém	cription de l'interface	18 20
	2.1 Puis: 2.2 Vérif Auto Auto Vérif Vérif Sécu Atté Com	Pré requis pour l'alimentation sance d'entrée Contrôle préalable fication de la tension d'entrée ochement o calibration fication du type d'appareil et version du micrologiciel fication des fonctions urité de la sonde pensation de la sonde	20 20 21 21 21 21 22 22 22 22 22 22 22 22 22
3	Fond	ctions et descriptions de fonctionnement	27
	3.1 3.2 3.3 3.4	Menu et boutons de contrôle Connecteurs Configuration automatique Configuration par défaut	28 30 31 34

3.5	Roue codeuse universelle		
3.6	Système vertical		
Util	isation des boutons verticaux et des boutons Volts/div		
3.7	Menu de contrôle vertical	40	
Configuration des voies			
3.8	Fonctions mathématiques	49	
Spe	ctre de la fonction analyse FFT	51	
3.9	Utilisation de la commande REF	59	
3.10	Système horizontal	61	
La r	oue codeuse de l'axe horizontal	62	
Zon	e de fenêtre	63	
3.11	Système de déclenchement	64	
Sou	rce du signal	65	
Тур	e de déclenchement	65	
Cou	plage		
Pos	ition	86	
Pen	te et niveau		
Déc	lenchement Holdoff	87	
3.12	Système d'acquisition de signaux		
3.13	Système d'affichage	94	
For	nat X-Y		
3.14	Système de mesure	99	
Mes	sure rapide avec le graticule	99	
Mes	sure avec les curseurs		
3.15	Système de sauvegarde	114	
Rap	pels de fichiers	115	
Créa	ation de dossiers et de fichiers	116	
Con	figuration de sauvegarde et de rappel	117	
Sau	vegarde et rappel de forme d'onde		
3.16	Utilitaire système		
Etat	: du système		
Lan	gue	134	
Auto-Calibration134			
Test automatique135			
Mis	Mise à jour du firmware1		
Pass	s/Fail	139	
Enre	egistrement d'une forme d'onde	144	

8	Ajus	tage périodique	
7	Spé	cifications	167
	6.2	Résolution de problèmes	165
	6.1	Messages d'erreur	164
6	Mes	sages d'erreur et résolution de problèmes	164
5	Con	trôle à distance	162
	4.7	Analyse d'un signal de communication différentiel	161
	4.6	Application de la fonction X-Y	159
	4.5	Déclencher sur un signal vidéo	158
	4.4	Analyse des détails du signal	157
	4.3	Capture d'un signal unique	156
	4.2	Mesures avec curseurs	154
	4.1	Mesures simples	153
4	Exer	nples d'application	153
	Mod	le « enseignement »	152
	Mer	nu d'aide	152
	Enre	gistreur (uniquement en mode scan)	148

1 Information générales

1.1 Synthèse du produit

L'oscilloscope BK Precision 2190D est un instrument portable utilisé pour effectuer des mesures de signaux et de formes d'ondes. La bande passante de l'oscilloscope est capable de capturer des signaux de plus de 100MHz avec un taux d'échantillonnage en temps réel de plus de 1GSa/s. Il permet d'extraire plus de détails d'un signal pour mener une analyse et l'afficher sur son grand écran LCD.

Caractéristiques:

- 2 voies, passe bande: 100 MHz
- Taux d'échantillonnage en temps réel sur une voie unique de plus de 1GSa/s
- Plus de 40k de profondeur de mémoire
- Ecran LCD TFT couleur de 7 pouces
- Type de trigger (déclencheur) : front, impulsion, vidéo, pente et alterné
- Filtre digital et fonction d'enregistreur d'ondes
- Mesure automatique de 32 paramètres (tension et temps)
- Interface standard : Host USB, périphérique USB, RS-232, Sortie

1.2 Contenu de la boîte

Veuillez contrôler l'aspect mécanique et électrique de l'instrument sitôt que vous le recevez. Déballez tous les articles contenus dans le carton d'emballage et vérifiez qu'il n'y ai aucun signe de dommages visibles qui pourraient s'être produit durant le transport. En cas de dommage, veuillez en avertir immédiatement le transporteur. Garder le carton d'emballage d'origine au cas où vous devriez renvoyer le produit. Chaque instrument est expédié avec les éléments suivants :

- Oscilloscope numérique 2190D 100 MHz
- Manuel d'utilisation
- Câble d'alimentation
- Câble USB de type A vers type B
- 2 sondes d'oscilloscope passives 1:1/10:1

Vérifiez bien la présence de chacun de ces articles dans l'emballage original et contactez immédiatement votre distributeur si l'une des pièces mentionnées ci-dessus ne se trouve pas dans l'emballage.

1.3 Panneau avant

Il est indispensable pour vous de bien vous familiariser avec le panneau avant de l'oscilloscope avant de commencer à utiliser l'instrument. Vous trouverez ci-dessous une brève introduction des fonctions du panneau frontal.

Figure 1.1 – Panneau avant

Description du panneau avant

- **1** Port USB avant (type A)
- **2** Touches de fonction du menu, Menu On/Off, bouton d'impression
- **③** Voies d'entrée (1 M Ω BNC)
- (4) Compensation de la sonde (1 kHz et terre)
- **(5)** Contrôles horizontaux (temps)
- 6 Boutons de déclenchement
- **7** Bouton de réglage automatique
- 8 Boutons du menu et de mesures
- **9** Roue codeuse universelle
- (10) Contrôles verticaux

1.4 Panneau arrière

Les images suivantes montrent l'emplacement des connections situées sur le panneau arrière.

Figure 1.2 – Panneau arrière

Description du panneau arrière

- 1 Encoche de sécurité
- 2 Sortie Pass/Fail (Réussite/Echec)
- **3** Connecteur RS-232
- **(4)** Port USB arrière (Type B)
- **(5)** Connecteur d'alimentation secteur
- 6 Interrupteur M/A

Figure 1.3 – Ecran d'affichage

Description de l'interface

1	Marqueur de niveau du déclencheur
2	Marqueurs d'écran verticaux (Référence à la masse)
3	Source de la voie, symbole du couplage du signal , Volts/Division, indicateur de limitation de bande passante
4	Réglage de la base de temps principale
5	Position du trigger horizontal
6	Compteur de fréquence
7	Source du trigger (déclencheur), type et indicateur de niveau
8	Indicateur du port USB arrière

9	Indicateur du bouton d'impulsion « Print Key Save Function »
10	Aperçu de la forme des ondes
(11)	Marqueur de position horizontale du trigger (déclencheur)
12	Lecteur flash USB
13	Déclencheur (trigger)

2 Démarrage

Avant de connecter et de mettre en marche l'instrument, veuillez prendre connaissance et suivre les instructions énoncées dans ce chapitre.

2.1 Pré requis pour l'alimentation

Puissance d'entrée

L'alimentation universelle accepte une tension secteur de :

100 – 240 V (+/- 10%), 50 /60 Hz (+/- 5%)

100 – 127 V, 45 – 440 Hz

Avant branchement à une prise secteur, assurez-vous que l'interrupteur est en position OFF et vérifiez que le cordon d'alimentation, sont compatibles avec la tension et qu'il y ai une capacité du circuit suffisante pour l'alimentation électrique. Une fois vérifié, connectez le câble fermement.

AVERTISSEMENT

Le câble d'alimentation fourni est certifié conforme aux normes de sécurité pour cet instrument lorsqu'il est utilisé à sa valeur nominale. Si vous changez un câble ou ajoutez un câble d'extension, assurez-vous qu'il soit adapté à la puissance nominale exigée pour cet instrument. Si vous n'utilisez pas le matériel correctement ou que vous utilisez des câbles non conformes aux normes de sécurité, la garantie du produit sera annulée.

2.2 Contrôle préalable

Veuillez effectuer les étapes suivantes pour vous assurer que l'oscilloscope est prêt à être utilisé.

Vérification de la tension d'entrée

Assurez-vous que les tensions supportées sont disponibles pour l'alimentation électrique de l'instrument. Le niveau de tension doit correspondre aux spécifications énoncées dans la section 2.1.

Branchement

Branchez le cordon d'alimentation à la prise secteur sur le panneau arrière et appuyez sur le bouton ON pour allumer l'instrument. Un écran de démarrage va s'afficher pendant le chargement, par la suite l'écran principal s'affichera.

Autotest

L'instrument possède 3 options d'autotest pour tester son écran, ses touches et le rétroéclairage LED de ses fonctions, son menu et ses options de contrôle comme indiqué ci-dessous

Figure 2.1 – Menu d'autotest

Pour mener à bien l'autotest, veuillez vous référer à la section « Autotest » pour plus d'informations.

Auto calibration

Cette option implique une procédure d'auto calibration interne qui vérifie et ajuste l'instrument. Pour mener à bien l'auto calibration, veuillez vous référer à la section « Auto calibration » pour plus d'informations.

Vérification du type d'appareil et version du micrologiciel

Le type d'appareil et la version du micrologiciel peuvent être vérifiés à partir du menu du système.

Appuyez sur **Utility** et sélectionnez l'option **System Status**. La version du logiciel et du hardware, le model et le numéro de série vont s'afficher. Appuyez sur **Single** pour quitter.

Vérification des fonctions

Veuillez suivre les indications suivantes pour une vérification rapide des fonctionnalités de l'oscilloscope.

 Mettez l'oscilloscope en marche. Appuyez sur « DEFAULT SETUP » (configuration par défaut) pour afficher l'analyse de l'auto vérification. L'atténuation de la sonde est réglée sur 1X par défaut.

Figure 2.2 – Vue d'ensemble

 Réglez la sonde sur la position 1X et connectez la sonde à la voie 1 de l'oscilloscope. Pour ce faire, alignez la prise de la sonde avec le connecteur BNC de la voie 1. Poussez ensuite pour connecter et tournez la bague vers la droite pour maintenir la sonde en place. Connectez la pointe de la sonde et le cordon de masse aux connecteurs PROBE COMB.

Figure 2.3 – Compensation de la sonde

 Appuyez sur la touche « AUTO ». Après quelques secondes, un signal carré, de fréquence 1kHz et d'amplitude crête à crête 3V devrait apparaître.

Figure 2.4 – Signal 3V crête à crête

 Appuyez sur la touche « CH1 » deux fois pour couper la voie 1 et appuyez sur « CH2 » pour passer à l'écran de la voie 2, réinitialisez la voie 2 comme indiqué dans l'étape 2 et 3.

Sécurité de la sonde

Un dispositif de sécurité apporte une protection pour les doigts contre les décharges électriques.

Figure 2.5 – Sonde de l'oscilloscope

Connectez la sonde à l'oscilloscope et connectez la borne de mise à la masse à la terre avant d'effectuer une mesure.

Electrocution

Afin d'éviter un choc électrique lors de l'utilisation de la sonde, placez vos doigts derrière le dispositif de sécurité situé sur le corps de la sonde. (anneau de garde)

Afin d'éviter un choc électrique lors de l'utilisation de la sonde ne touchez pas les parties métalliques de la tête de sonde quand celle-ci est connectée à une source de tension. Connectez la sonde à l'oscilloscope puis connectez la borne de mise à la masse à la terre avant d'effectuer une mesure.

Atténuation de la sonde

Les sondes sont disponibles avec plusieurs facteurs d'atténuation qui affectent l'échelle verticale du signal. La fonction de vérification de la sonde vérifie que l'option d'atténuation de la sonde correspond à l'atténuation de cette dernière.

Vous pouvez appuyer sur un bouton du menu vertical (tel que le bouton MENU de CH1), et sélectionnez l'option de Sonde qui correspond au facteur de votre sonde.

NOTE: Le réglage par défaut de la sonde est de 1.

Assurez-vous que le bouton d'atténuation sur la sonde corresponde bien avec celui de l'oscilloscope. Les positions du bouton sont 1X et 10X.

NOTE: Lorsque le bouton d'atténuation est réglé sur 1X, la sonde limite la bande passante à 6 MHz (selon les spécifications de la sonde). Pour utiliser l'intégralité de la bande passante, assurez-vous de régler la position du bouton d'atténuation sur 10X

Compensation de la sonde

La vérification de la sonde est possible en faisant cet ajustement manuellement pour faire correspondre votre sonde au voie d'entrée.

Figure 2.6 – Configuration de compensation de la sonde

- Réglez l'option d'atténuation de la sonde dans le menu des voies sur 10X. Pour se faire appuyez sur le bouton CH1 et sélectionnez « Probe » (sonde) dans le menu. Sélectionnez 10X. Réglez la sonde sur 10X et connectez-la sur la voie 1 de l'oscilloscope. Si vous utilisez le grippe-fil, assurez une connexion appropriée en insérant fermement l'extrémité sur la sonde.
- Raccordez l'extrémité de la sonde au connecteur PROBE COMP 3V et le cordon de référence au connecteur de masse. Affichez la voie puis appuyez sur la touche « Auto ».
- 3. Vérifiez la forme de l'onde affichée.

Figure 2.7 – Image de la compensation

4. Si nécessaire, réglez le potentiomètre d'ajustement de vos sondes. Répétez l'opération autant de fois que nécessaire.

3 Fonctions et descriptions de fonctionnement

Pour une utilisation efficace de votre oscilloscope, vous devez prendre connaissance des fonctions de celui-ci:

- Menu et boutons de contrôle
- Connecteur
- Configuration automatique
- Configuration par défaut
- Roue codeuse universelle
- Réglage vertical
- Menu des voies
- Fonctions mathématiques
- Courbe de référence
- Réglage horizontal
- Système de déclenchement
- Système d'acquisition des signaux
- Système d'affichage
- Système de mesure de formes d'ondes
- Système utilitaire
- Système de stockage
- Fonction d'aide en ligne

Figure 3.1 – Boutons de contrôle

- Boutons correspondants aux voies (CH1, CH2) : Appuyez sur un des deux boutons de voie pour allumer ou éteindre la voie sélectionnée et ouvrir le menu pour cette voie. Vous pouvez utiliser le menu des voies pour régler une voie. Lorsque la voie est sélectionnée, le bouton de cette voie est allumé.
- **MATH:** Appuyez sur la touche pour afficher le menu Math. Vous pouvez appuyez sur le menu Math pour utiliser les fonctions mathématiques de l'oscilloscope.
- **REF:** Appuyez sur la touche Ref pour afficher le menu Onde de Référence. Vous pouvez utiliser ce menu pour enregistrer et charger quatre ou deux formes d'ondes de référence vers et depuis la mémoire interne.

- **MENU HORI (menu horizontal):** Appuyez sur la touche pour afficher le menu horizontal. Vous pouvez utiliser le menu horizontal pour afficher la forme de l'onde et zoomer sur le segment d'une forme d'onde.
- **TRIG MENU (menu de déclenchement):** Appuyez sur la touche pour afficher le menu « Trigger ». Vous pouvez utiliser ce menu pour accéder aux différents types de déclenchement (front. Impulsion, vidéo, pente, alternatif) et à ses paramètres.
- SET TO 50%: Appuyez sur la touche pour stabiliser rapidement une forme d'onde. L'oscilloscope peut régler automatiquement le niveau du trigger à la valeur médiane entre la tension minimum et maximum. Cette démarche est utile lorsque vous connectez un signal au secteur EXT TRIG et réglez la source du trigger sur Ext ou Ext/5
- **FORCE:** Utilisez la touche FORCE pour terminer l'acquisition de la forme d'onde en cours, que l'oscilloscope détecte ou non un trigger. Cela est utile pour les acquisitions SINGLE et le mode normal du trigger.
- SAVE/RECALL: Appuyez sur la touche pour afficher le menu Save/Recall (sauvegarde/chargement). Vous pouvez utiliser ce menu pour enregistrer et charger 20 paramètres de l'oscilloscope et 10 formes d'ondes depuis et vers la mémoire interne ou un périphérique USB (limité par une capacité de mémoire du périphérique USB). Vous pouvez également l'utiliser pour restaurer les paramètres d'usine, pour enregistrer les données d'une forme d'onde en tant que format séparé par des virgules (.CVS) et pour enregistrer l'image de la forme d'onde affichée.
- ACQUIRE (acquisition): Appuyez sur la touche ACQUIRE pour afficher le menu d'acquisition. Vous pouvez utiliser le menu Acquire pour régler le mode Sampling (échantillonnage) de votre acquisition (échantillonnage, détection de pics et moyenne).
- **MEASURE:** Appuyez sur la touche MEASURE pour afficher le menu des paramètres de mesures.
- **CURSORS:** Afficher le menu Cursor. Les boutons verticaux ajustent la position du curseur tout en affichant le menu. Les curseurs sont dès lors activés. Lorsque vous quittez le menu,

les curseurs restent affichés (sauf si l'option « Type » est sur la position OFF) mais ne sont plus modifiables.

- **DISPLAY (affichage):** Appuyez sur la touche DISPLAY pour ouvrir le menu d'affichage. Vous pouvez utiliser ce menu pour régler la persistance, afficher les styles de formes d'ondes et de réticule.
- UTILITY (utilitaire): Appuyez sur le bouton « Appuyez sur » pour ouvrir le menu utilitaire. Vous pouvez utiliser ce menu pour configurer les fonctionnalités de l'oscilloscope, tels que les sons, la langue, le compteur etc. Vous pouvez aussi avoir un aperçu sur l'état du système et mettre à jour le logiciel.
- **DEFAULT SETUP (configuration par défaut)**: Appuyez sur la touche DEFAULT SETUP pour restaurer les paramètres d'usine de l'oscilloscope.
- **HELP**: Accès à l'aide en ligne.
- **AUTO**: Appuyez sur la touche AUTO pour régler automatiquement les contrôles de l'oscilloscope de façon à produire un affichage exploitable des signaux d'entrée.
- **RUN/STOP**: Appuyez sur la touche RUN/STOP pour acquérir des formes d'onde de manière continue ou bien pour stopper l'acquisition.
- Note: Si l'acquisition de forme d'onde est arrêtée (en utilisant la touche RUN/STOP ou SINGLE), utilisez le bouton TIME/DIV pour amplifier ou compresser la forme d'onde.
- **SINGLE**: Appuyez sur la touche SINGLE pour l'oscilloscope acquière une forme d'onde unique puis s'arrête.

3.2 Connecteurs

Figure 3.2 – Connecteurs

- **Connecteurs des voies (CH1, CH2):** Connecteurs d'entrée pour l'affichage des formes d'onde.
- EXT TRIG (déclencheurs externes): Connecteur pour une source de déclenchement externe. Utilisez le Menu Trigger pour sélectionner la source de déclenchement.
- Probe Compensation (compensation de la sonde): Tension d'entrée et masse de la sonde à 1 kHz. A utiliser pour faire correspondre électriquement la sonde avec la voie d'entrée de l'oscilloscope.

3.3 Configuration automatique

L'oscilloscope 2190D possède une fonction de configuration automatique qui identifie les types de formes d'onde et ajuste automatiquement les contrôles pour produire un affichage exploitable des signaux d'entrée.

Appuyez sur la touche AUTO du panneau avant, puis appuyez sur le bouton d'option du menu adjacent à la forme d'onde désirée comme cidessous :

Figure 3.3 – Configuration automatique

	
Option	Description
Sinus en onde entière (Multi- cycle sine)	Réglage automatique de l'écran et affichage de plusieurs cycles.
Sinus en onde direct (Single- cycle sine)	Réglage automatique de l'écran et affichage d'un seul cycle.
F	Réglage automatique et visualisation du temps de la montée.
Front descendant (Falling edge)	Réglage automatique et visualisation du temps de la descente.
Annule les changements (Undo Setup)	Rappel du réglage précédent de l'oscilloscope.

Table 3.1 – Menu de configuration automatique

La configuration automatique détermine la source de déclenchement basée sur les conditions suivantes :

- Si un signal est affiché à chacune des voies, l'instrument utilise la voie avec le signal possédant la plus basse fréquence.
- Si aucun signal n'est détecté, l'instrument affiche la voie la plus faible qui était déjà affichée au moment ou le mode automatique a été sélectionné.
- Si l'oscilloscope ne détecte aucun signal et qu'aucune voie n'est affichée, alors il utilise la voie 1.

Fonction	Réglages	
Mode d'acquisition	Acquisition par échantillonnage	
Format d'affichage	Y-T	
Type d'affichage	Points pour un signal vidéo Vecteurs pour un spectre FFT Sinon pas de changement	
Couplage vertical	Ajusté à DC ou AC selon le signal d'entrée	
Limite de la bande passante	Off (pas de limitation)	
V/div	Calibré	
Ajustement VOLTS/DIV	Réglage grossier	
Inversion du signal	Off	
Position horizontale	Centrée	
Time/div	Ajusté	
Type de déclenchement	Pente	
Source de déclenchement	Détecte automatiquement la voie qui reçoit le signal d'entrée	
Pente de déclenchement	Montante	
Mode de déclenchement	Auto	
Couplage du déclenchement	DC	

Table 3.2 – Eléments de menu fonctionnel de réglage automatique

Déclenchement holdoff (Trigger holdoff)	Minimum
Niveau de déclenchement	Réglé à 50%

NOTE: La fonction AUTO peut être désactivée. Reportez-vous à la section « Mode d'éducation » pour plus de détails.

3.4 Configuration par défaut

L'oscilloscope est réglé pour un fonctionnement standard lors de sa sortie d'usine. C'est la configuration par défaut. Pour remettre en place ces réglages, appuyez sur le bouton **DEFAULT SETUP.** Ainsi vous allez modifier les réglages des touches, des commandes et des options lorsque vous appuierez sur cette touche. Référez-vous à la « Table 3.3 – Table de configuration par défaut » ci-dessous :

- Langue d'affichage
- Fichiers de sauvegarde des formes d'onde de référence
- Fichiers de sauvegarde des configurations
- Contraste de l'affichage
- Données de calibrage

Menu ou système	Options, touches Ou boutons	Réglage par défaut
	Couplage	DC
	Limite de la bande passante	Off
CH1,CH2	Volts/div	Grossier
	Sonde	X1
	Inversion	Off
	Filtre	Off

Table 3.3 – Table de configuration par défaut

	Volts/div	1.00V	
	Opération	CH1+CH2	
	Inversion CH1	Off	
	Inversion CH2	Off	
	Opération FFT:		
MATH	Source	CH1	
	Fenêtre	Hanning	
	Zoom FFT	X1	
	Echelle	dBVrms	
	Affichage	Séparé	
	Fenêtre	Principale	
HORIZONTAL	Position	0.00µs	
	Sec/div	500µs	
	Zone de fenêtre	50.0µs	
	Bouton de déclenchement	Niveau	
	Туре	Off	
	Source	CH1	
CURSEUR (CURSOR)	Horizontal (tension)	+/-3.2divs	
	Vertical (temps)	+/-5divs	
	Options 3 modes	Echantillonnage	
	Moyennes	16 échantillons	
ACQUISITION (ACQUIRE)	Mode d'échantillonnage	Temps réel	
	Туре	Vecteurs	
	Persistance	off	
AFFICHAGE (DISPLAY)	Grille		
	Intensité	60%	
	Luminosité	40%	
	Format	YT	
	Affichage du	Infini	
-----------------------	------------------------	---------------	--
	menu		
	Туре	Paramètres	
(SAVE/RECALL)	Enregistrement	Appareil	
(0),0,)	Paramètre	No.1	
	REFA/REFB	REFA	
	Source	CH1	
REFERENCE (REF)	REFA	off	
	REFB	off	
	Son	on	
	Compteur	On	
UTILITAIRE (UTILITY)	USB à l'arrière	USBTMC	
	Sortie	off	
	Enregistreur	off	
	Туре	Front	
	Source	CH1	
	Pente	Montante	
(TRIGGER (edge))	Mode	Auto	
	Couplage	DC	
	Niveau	0.00V	
	Туре	Impulsion	
	Source	CH1	
	Quand	=	
(TRIGGER (pulse))	Largeur d'impulsion	1.00ms	
	Mode	Auto	
	Couplage	DC	
	Туре	Vidéo	
DECLENCHEMENT (vidéo)	Source	CH1	
(TRIGGER (Video))	Polarité	Normal	
	Synchronisation	Toutes lignes	

	Standard	NTSC
	Mode	Auto
DECLENCHEMENT (pente) (TRIGGER (Slope))	Туре	Pente
	Source	CH1
	Temps	1.00ms
	Mode	Auto
DECLENCHEMENT (alterné) (TRIGGER (Alternative))	Туре	Alterné
	Source	CH1
	Mode	Front
	Couplage	DC

3.5 Roue codeuse universelle

Figure 3.4 – Roue codeuse universelle

Vous pouvez utiliser la roue codeuse universelle qui dispose de nombreuses fonctions, telles que l'ajustement du temps d'attente, le déplacement des curseurs, le réglage de la largeur d'impulsion et de la ligne vidéo, l'ajustement de la limite des fréquences hautes et basses ainsi que l'ajustement des axes X et Y lors de l'utilisation de la fonction « pass/fail » etc. Vous pouvez de même tourner la roue codeuse universelle afin de sauvegarder les réglages, les formes d'onde, les images lors de la sauvegarde ou du rappel et de sélectionner les options du menu. Pour certaines fonctions, l'indicateur lumineux situé au dessus de la roue signalera que celle-ci peut être utilisée pour effectuer des changements ou des réglages. En appuyant sur la roue, vous pouvez établir une sélection une fois les changements et réglages terminés.

3.6 Système vertical

Le contrôle vertical pourrait être utilisé pour afficher les formes d'ondes, modifier l'échelle et la position des signaux.

Figure 3.5 – Commandes du système vertical

Utilisation des boutons verticaux et des boutons Volts/div

• Bouton en « position » verticale

- 1. Utilisez le bouton « Position » verticale pour déplacer les formes d'onde de la voie en haut ou en bas de l'écran. La résolution du bouton varie suivant l'échelle verticale.
- Lorsque vous ajustez la position verticale des formes d'onde des canaux, l'information de la position verticale s'affichera en bas à gauche de votre écran. Par exemple « Position volts=24.6mV »
- 3. Appuyez sur le bouton « position » vertical pour régler la position verticale à zéro.

• Bouton "Volts/div"

- Utilisez les boutons « Volts/div » pour contrôler la façon dont l'oscilloscope amplifie ou atténue le signal de la source des formes d'onde de la voie. Lorsque vous tournez le bouton « volts/div », l'oscilloscope augmente ou diminue la taille verticale de la forme d'onde sur l'écran tout en respectant le niveau de la masse.
- 2. Lorsque vous appuyez sur le bouton « volts/div », vous pouvez changer l'option « volts/div » entre « coarse » (grossier) et « fine » (fin). L'échelle verticale est réglée sur une fréquence d'étape 1-2-5 en mode « coarse ». Elle augmente dans le sens des aiguilles d'une montre et diminue dans le sens contraire des aiguilles d'une montre. En mode « fine » (fin) le bouton change l'échelle Volts/div petit à petit entre les paramètres « coarse ». Encore une fois, l'échelle augmente dans le sens des aiguilles d'une montre.

3.7 Menu de contrôle vertical

Options	Paramètres	Explications
	DC	Les composantes AC et DC du signal d'entrée passent à travers l'oscilloscope.
Couplage (Coupling)	AC	La composante DC est bloquée et les signaux en dessous de 10Hz sont atténués.
	GND	GND déconnecte le signal d'entrée.
Limitation de la bande	On	Limite la bande passante pour réduire le bruit ; filtre le signal pour réduire le bruit et d'autres
(BW limit)	Off	composants avec des fréquences hautes non désirées.
		Sélectionne la résolution du bouton Volts/Div
Volts/Div	Coarse	« Coarse » définit une séquence 1-2- 5.
	Fine	« Fine » change la résolution pour des changements plus fins.
Sonde (Probe)	1X, 5X 10X, 50X 100X, 500X, 1000X	Réglée pour correspondre au type de sonde que vous utilisez pour assurer des mesures verticales correctes.
Page suivante (Next Page)	Page 1/3	Appuyez sur le bouton pour accéder à la deuxième page du menu.

Table 3.4 – Menu de fonction de la voie

Options	Paramètres	Explications
Inversion	on	Forme du signal inversée.
(Invert)	off	Forme du signal originale.
Filtre (Filter)		Appuyez sur ce bouton pour
		accéder au menu « Digital Filter ».
Daga sujuanta	Page 2/3	Appuyez sur ce bouton pour
(Next page)		accéder à la troisième page du
(Next page)		menu.

Table 3.5 – Menu 2 de fonction de la voie

Table 3.6 – Menu 3 de fonction de la voie

Options	Paramètres	Explications
Unité	V	Réglage d'unité d'échelle à la tension.
(Unit)	A	Réglage d'unité d'échelle du courant.
Décalage (Skew)	-100 ns – 100ns	Réglage du temps de décalage entre deux voies.
Page suivante (Next page)	Page 3/3	Appuyez sur ce bouton pour retourner à la première page du menu.

Options	Paramètres	Explications
Filtre numérique	On	Enclenche le filtre numérique.
(Digital filter)	Off	Arrête le filtre numérique.
	t⊐_₊f	Réglé sur LPF (Filtre Pass bas).
	tf	Réglé sur HPF (Filtre Pass haut).
Туре	tf	Réglé sur BPF (Filtre passe bande).
	Þqf	Réglé sur BRF (Filtre rejection de bande).
Limite haute		Tournez la roue "universelle" pour
(Upper limit)		régler la limite haute.
Limite basse		Tournez la roue "universelle" pour
(Lower limit)		régler la limite basse.
Retour		Retourner à la seconde page du menu.

Table 3.7 – Menu du filtre numérique

- **Couplage "GND"** : Utilisez le couplage GND pour afficher une forme d'onde de zéro volt. A l'intérieur, la voie d'entrée est connectée à un niveau de référence de zéro volt.
- **Résolution fine**: La saisie d'échelle verticale affiche le réglage Volts/Div réel en même temps que pour la résolution fine. Si vous passez à la configuration « coarse », cela ne changera pas l'échelle verticale tant que le contrôle de VOLTS/DIV sera ajusté.

NOTE:

La réponse verticale de l'oscilloscope tend lentement à un niveau supérieur à la bande passante spécifiée. Ainsi, le spectre FFT peut

indiquer des informations de fréquence valides supérieures à celle de la bande passante de l'oscilloscope. Cependant, des informations d'amplitude proches ou supérieures à celle de la bande passante ne seront pas précises.

Si la voie est réglée sur couplage DC, alors vous pouvez rapidement mesurer la composante DC du signal simplement en notant l'amplitude qui sépare le signal du niveau zéro.

Si la voie est réglée sur couplage AC, alors la composante DC est bloquée, vous permettant d'utiliser une meilleure sensibilité pour afficher la composante AC du signal.

Configuration des voies

Chaque voie possède son propre menu. Les éléments sont réglés séparément en fonction de chaque voie.

1. Régler le couplage de voie

Prenons CH1 pour exemple; le signal testé est une onde sinusoïdale avec un décalage (DC) :

 Appuyer sur « CH1» → « Coupling » → AC. Activez le mode couplage AC. La composante DC du signal d'entrée est alors bloquée.

Figure 3.6 – Couplage AC

 Appuyez sur "CH1" → « Coupling » → "DC", Activez le mode couplage DC. Ainsi, les composants DC et AC du signal d'entrée seront capturés.

Figure 3.7 – Couplage DC

• Appuyez sur "CH1"→"Coupling"→"GND". Activez le mode GND. Cela déconnecte le signal d'entrée.

Figure 3.8 – Couplage de masse

2. Limitation de la passe bande

Prenons CH1 pour exemple:

- Appuyez sur "CH1"→"BW Limit"→ "On", et la bande passante sera limitée à 20MHz.
- Appuyez sur "CH1"→"BW Limit"→ "Off", et la limitation de la passe-bande sera désactivée.

Figure 3.9 – Limite de la passe-bande

3. Réglages Volts/Div

Le réglage d'échelle verticale possède un mode « Coarse » (réglage grossier) et un mode « Fine » (réglage fin). La sensibilité verticale varie entre 2mV/div et 10 V/div. Prenons CH1 pour exemple:

- Appuyez sur "CH1"→"Volts/Div"→"Coarse". Il s'agit du mode par défaut de Volts/Div, il établit une échelle verticale dans une séquence en 1-2-5 avec une sensibilité qui peut aller de 2 mV/div, 5 mV/div, 10 mV/div à 10 V/div.
- Appuyez sur "CH1" → Volts/Div" → "Fine". Ce réglage vous permet d'obtenir des pas plus fins entre les réglages « Coarse ». Cela sera utile lorsque vous aurez besoin d'ajuster l'amplitude de la forme d'onde.

Figure 3.10 – Réglage Coarse/Fine

4. Réglage de l'atténuation de la sonde

Afin de mettre en place le coefficient d'atténuation, il vous faut accéder au menu de mise en œuvre des voies. Si le coefficient d'atténuation est de10 :1, alors le coefficient d'entrée devra être réglé à 10X, de sorte que les indications et les mesures sur Volts/div soient correctes.

Prenons CH1 pour exemple, lorsque vous utilisez la sonde 100:1 :

• Appuyez sur "CH1"→"Probe" →"100X"

Figure 3.11 – Réglage de l'atténuation de la sonde

5. Inversion des formes d'onde

Prenons CH1 pour exemple:

 Appuyez sur "CH1" → Next Page "Page 1/3" → "Invert" → "On":

6. Utilisation du filtre numérique

 Appuyez sur "CH1" → Next Page "Page 1/3" → "Filter", cela affiche le menu de filtre numérique. Sélectionnez "Filter Type" (type de filtre), puis "Upper Limit" (limite haute) ou "Lower Limit" (limite basse) puis tournez la roue codeuse universelle pour les ajuster.

 Appuyez sur "CH1" → Next Page "Page 1/3" → "Filter" →"Off". Cela arrête la fonction de filtre numérique.

Figure 3.13 – Menu du filtre numérique

 Appuyez sur "CH1" → "Next Page 1/3" → "Filter" → "On". Cela enclenche la fonction de filtre numérique.

Figure 3.14 – Ecran d'ajustement du filtre numérique

3.8 Fonctions mathématiques

La fonction mathématiques montre les résultats après les opérations +,-,*, / et les opérations FFT des voies CH1 et CH2. Appuyez sur le bouton « MATH » pour afficher les opérations mathématiques des formes d'onde. Appuyez sur ce même bouton à nouveau pour retirer cet affichage.

Fonctions	Paramètres	Explications
Opération	+, -, *, /, FFT	Opérations mathématiques entre le signal de CH1 et de CH2.
Source A	CH1 – CH2	Sélectionne CH1 ou CH2 comme source A.
Source B	CH1 – CH2	Sélectionne CH1 ou CH2 comme source B.
Inversion	on	Inverse la forme d'onde « MATH »
(Invert)	off	Désactive la fonction d'inversion « MATH ».
Page suivante	Page 1/2	Accès à la seconde page du menu « MATH ».
(Next page)		

$1 a \mu e 3.0 - Menu ue la fonction mathematique$
--

Fonctions	Paramètres	Explications
		Utiliser la roue codeuse universelle
		pour ajuster la position verticale (de
$\mathbf{\vee}$		la fonction mathématique) de la
		forme d'onde.
		Utiliser la roue codeuse universelle
		pour ajuster l'échelle verticale (de la
		fonction mathématique) de la
		forme d'onde.
Page suivante	Page 2/2	Retourner à la première page du
(Next page)		menu MATH

Table 3.9 – Menu 2 de la fonction mathématique

Table 3.10 – Description des fonctions mathématiques

Opérations	Paramètres	Explications
+	A+B	Addition des formes d'onde de la source A et de la source B.
-	A-B	Soustraction de la forme d'onde de la source B à partir de la source A.
*	A*B	Multiplication de la source A par la source B
/	A/B	Division de la source A par la source B.
FFT	Fast Fourier Transform (application de traitement du signal de type transformée de Fourier)	

Figure 3.15 – Fonction mathématique de forme d'onde

Spectre de la fonction analyse FFT

Le processus FFT convertit mathématiquement un signal temporel en ses composantes de fréquence. Vous pouvez utiliser l'opération mathématique FFT pour analyser les types de signaux suivants :

- Analyse des harmoniques sur le secteur
- Test du contenu et de la distorsion harmonique dans le système.
- Caractérisation du bruit d'une alimentation DC
- Test de la réponse de filtre et d'impulsion dans le système
- Analyse de vibration

Option FFT	Paramètres	Explications
Source	CH1, CH2	Sélectionne ces voies comme source pour l'opération FFT.
	Hanning	Sélectionne le type de fenêtre
Fenêtre	Hamming	
(Window)	Rectangular	
	Blackman	
	1X	Modifie le zoom horizontal de
	2X	l'affichage FFT.
200101771	5X	
	10X	
Page suivante	Page 1/2	Accès à la seconde page du
(Next page)	1 age 1/2	menu FFT.

Table 3.11 – Menu 1 de la fonction FFT

Table 3.12 – Menu 2 de la fonction FFT

Options FFT	Paramètres	Explications
Echelle	Vrms	Réglage de l'unité de l'échelle verticale sur Vrms.
(Scale)	dBVrms	Réglage de l'unité de l'échelle verticale sur dBVrms.
Affichage	Ecran partagé en 2	Affiche la forme d'onde FFT en mode écran partagé.
(Display)	Plein écran	Affiche la forme d'onde FFT en mode plein écran.

Page suivante	Page 2/2	Retour à la première page du
(Next page)		menu FFT

Pour utiliser la fonction FFT, vous devez effectuer les tâches suivantes :

- 1. Réglez la forme d'onde de la source.
- 2. Appuyez sur le bouton AUTO pour afficher une forme d'onde au format YT.
- 3. Tournez le bouton vertical « Position »pour déplacer la forme d'onde YT au centre (verticalement).
- 4. Tournez le bouton horizontal « Position » pour positionner la partie de la forme d'onde que vous voulez analyser dans les 8 divisions centrales de l'écran. L'oscilloscope calcule le spectre FFT en utilisant les 1024 points centraux de la forme d'onde.
- 5. Tournez le bouton "Volts/div" pour vous assurer que la forme d'onde reste entièrement visible à l'écran.
- 6. Tournez le bouton "S/div" pour régler la résolution que vous souhaitez pour le spectre FFT.
- 7. Si possible, réglez l'oscilloscope pour afficher plusieurs périodes du signal.

Pour fixer correctement une FFT, suivez les instructions suivantes :

- 1. Appuyez sur le bouton MATH.
- 2. Réglez l'option « operation » sur FFT.
- Appuyez sur le bouton « source » pour sélectionner « CH1 » ou « CH2 » selon le signal d'entrée de la voie.
- 4. Tournez le bouton « Time/div » pour ajuster le taux d'échantillonnage (ce paramètre est affiché derrière le paramètre de la base de temps), en vous assurant qu'il est au moins deux fois supérieur à la fréquence du signal d'entrée (pour éviter le repliement selon le théorème de Nyquist)

Afficher le spectre FFT

Appuyez sur le bouton MATH pour afficher le menu Mathématiques. Utilisez les options pour sélectionner la voie de source, l'algorithme de fenêtre et le facteur de spectre FFT. Vous ne pouvez afficher qu'un spectre FFT à la fois. Vous pouvez choisir parmi les options d'affichage suivantes : « Full screen » (plein écran) ou « Split Screen » (écran partagé) dans Display afin d'afficher les ondes FFT ou les traces de la voie et d'onde FFT correspondante sur le même écran (en mode écran partagé).

Sélectionner la fenêtre FFT

Les fenêtres réduisent les effets parasites sur le spectre FFT. L'analyse FFT suppose que la forme d'onde YT se répète à l'infini. Avec un nombre entier de cycles, la forme d'onde YT commence et se termine avec la même amplitude et il n'y a pas de discontinuité dans la forme du signal. Un nombre non-entier de cycles abouti à un signal dont le point de départ et d'arrivée sont d'amplitudes différentes. Les transitions entre les points de départ et d'arrivée causent des discontinuités dans le signal, ce qui introduit des transitions à haute fréquence et peut perturber le spectre.

Fenêtres	Caractéristiques	Applications
Rectangulaire	Meilleure résolution de fréquence ; très mauvaise résolution d'amplitude ; quasiment identique à l'utilisation d'aucune fenêtre.	Signaux symétriques. Sinusoïde d'amplitude constante (fréquence fixe). Bruit aléatoire à large bande avec des variations relativement lentes.
Hanning Hamming	Meilleure fréquence, faible résolution d'amplitude par rapport au rectangulaire. La fenêtre « hamming » possède une meilleure résolution de fréquence que la fenêtre « hanning »	Sinusoïde, signaux périodiques avec bruit à bande étroite. Signaux asymétriques.
Blackman	Meilleure résolution d'amplitude, très mauvaise résolution de fréquence.	Formes d'onde avec une seule fréquence afin de trouver les harmoniques de plus grand ordre.

Table 3.13 – Description de la fenêtre FFT

Amplifier le spectre FFT

Vous pouvez amplifier et utiliser les curseurs pour prendre des mesures sur le spectre FFT. L'oscilloscope possède une option « FFT Zoom » pour amplifier les curseurs horizontalement. Pour cela, appuyez sur le bouton de l'option et sélectionnez « 1X », « 2X », « 5X » ou « 10X ». D'autre part, vous pouvez également tourner la roue codeuse universelle pour zoomer sur la forme d'onde FFT horizontalement en pas **1-2-5**. Appuyez sur le bouton « Volts/div » pour l'amplification verticale.

Mesurer un spectre FFT à l'aide des curseurs

Vous pouvez effectuer deux mesures sur un spectre FFT : l'amplitude (en dB) et la fréquence (en Hz). L'amplitude de référence est de OdB quand OdB est égal à 1Vrms. Vous pouvez utiliser les curseurs pour prendre des mesures avec n'importe quel facteur de zoom. Utilisez les curseurs horizontaux pour mesurer l'amplitude et les curseurs verticaux pour mesurer la fréquence.

Si vous introduisez un signal sinusoïdal à la voie 1, suivez les étapes cidessous :

- Mesurer l'amplitude du signal FFT
 - 1. Introduisez un signal sinusoïdal sur la voie 1 et appuyez sur le bouton « AUTO ».
 - 2. Appuyez sur le bouton « MATH » pour accéder au menu Mathématiques.
 - 3. Appuyez sur le bouton « Operation » pour sélectionner FFT
 - 4. Appuyez sur la touche d'option« Source » pour sélectionner « CH1 » (voie1).
 - 5. Appuyez sur la touche « CH1 » pour afficher le menu de la voie 1.
 - Tournez la roue « Time/div » pour ajuster le taux d'échantillonnage (au moins deux fois supérieur à la fréquence du signal d'entrée).
 - Si le spectre FFT s'affiche en plein écran, appuyez à nouveau sur le bouton « CH1 » (voie 1) pour enlever l'affichage de la forme d'onde de la voie.
 - 8. Appuyez sur le bouton « Cursor » (curseur) pour accéder au menu Curseur.
 - Appuyez sur le bouton « Cursor Mode » (mode de curseur) pour sélectionner le mode « Manual » (manuel).
 - 10. Appuyez sur le bouton « Type » pour sélectionner « Voltage ».
 - 11. Appuyez sur le bouton d'option « Source » pour sélectionner « MATH »

- 12. Appuyez sur le bouton d'option « CurA » et tourner la roue « Universelle » pour placer le Curseur A au plus haut point de la forme d'onde FFT.
- 13. Appuyez sur le bouton d'option « CurB », tournez la roue « Universelle » pour placer les curseurs sur le point le plus bas de la forme d'onde FFT.
- L'amplitude (△V) s'affiche en haut de l'écran gauche.

Figure 3.16 – Mesure d'amplitude FFT

• Mesure de fréquence FFT

- 1. Appuyez sur le bouton « Cursor ».
- 2. Appuyez sur le bouton « Cursor mode » pour sélectionner le mode « Manual ».
- 3. Appuyez sur l'option « Type » et sélectionnez « Time ».
- 4. Appuyez sur l'option « Source » et sélectionnez « Math ».
- Appuyez sur l'option « CurA », tournez la roue codeuse universelle afin de déplacer le curseur A au plus haut niveau du signal FFT.
- 6. La valeur du CurA en haut à gauche de l'écran est la fréquence FFT. Cette fréquence doit être la même que celle du signal d'entrée.

Figure 3.17 – Mesure de fréquence FFT

NOTE:

La FFT d'une forme d'onde ayant une composante DC peut donner des valeurs d'amplitudes d'ondes de formes FFT incorrectes. Afin de minimiser la composante DC, optez pour le couplage AC sur la voie de mesure.

Afin d'afficher les formes d'onde FFT avec une dynamique satisfaisante, utilisez l'échelle dBVrms. L'échelle dBVrms affiche les amplitudes à l'aide d'une échelle logarithmique.

La fréquence Nyquist est la plus haute fréquence qu'un oscilloscope numérique puisse acquérir en temps réel sans repliement (aliasing). Cette fréquence représente la moitié du taux d'échantillonnage à condition qu'elle soit comprise dans la bande passante analogique de l'oscilloscope. Les fréquences étant au-delà de la fréquence Nyquist seront souséchantillonnées, ce qui provoque le repliement du signal (aliasing).

3.9 Utilisation de la commande REF

La commande « Référence » sauvegarde les formes d'onde dans la mémoire non volatile. La fonction référence devient accessible après qu'une forme d'onde ai été sauvegardée.

Options	Paramètres	Explications
	CH1,CH2,	Choix de la forme d'onde affichée
Source	CH1 off	pour la sauvegarde.
	CH2 off	
REFA		Choix de l'emplacement de
REFB		forme d'onde.
Enregistrement		Sauvegarde de la source de la forme d'onde dans
(Save)		l'emplacement de référence choisi.
REFA	on	Affichage de la forme d'onde de référence
REFB	off	Désactivation de l'onde de référence visible à l'écran.

Table 3.14 –	Menu de	la fonction	REF

Appuyez sur le bouton « Ref » pour afficher le menu « Reference waveform » (référence de forme d'onde).

Figure 3.18 – Menu de référence de forme d'onde

Instructions :

- 1. Appuyez sur le bouton du menu « REF » pour afficher le menu de référence.
- 2. Appuyez sur l'option « Source » pour sélectionner la voie du signal d'entrée.
- 3. Tournez la roue codeuse universelle de la position verticale et de « volts/div » pour ajuster la position verticale et l'échelle.
- 4. Appuyez sur le 3^{ème} bouton pour sélectionner l'emplacement de sauvegarde « REF A » ou « REF B ».
- 5. Appuyez sur le bouton « Save » (sauvegarder).
- 6. Appuyer sur le bouton du bas pour choisir « REF A On » ou « REF B On » pour rappeler la référence de forme d'onde.

NOTE:

Le mode X-Y n'est pas utilisable comme forme d'onde de référence.

Vous n'avez pas la possibilité d'ajuster la position horizontale et l'échelle de forme d'onde de référence.

3.10 Système horizontal

Les commandes horizontales sont les suivantes : deux roues codeuses ainsi qu'un bouton.

Figure 3.19 – Contrôles horizontaux

Table 3.15 – Men	u du système	horizontal
------------------	--------------	------------

Options	Paramètres	Explications
Retardé (Delayed)	On	Activer cette fonction pour afficher les informations base de temps principales sur la partie haute de l'écran et des les informations base de temps fenêtre sur le bas de l'écran.
	Off	Activer cette fonction pour afficher à l'écran seulement les informations de base de temps principales.

La roue codeuse de l'axe horizontal

Vous pouvez utiliser les contrôles horizontaux pour changer l'échelle horizontale et la position des formes d'ondes. L'affichage de l'axe horizontal indique le temps représenté au centre de l'écran utilisant la référence zéro comme temps de déclenchement. Un changement de l'échelle verticale est susceptible de provoquer un zoom avant ou un zoom arrière autour du centre de l'écran.

• La roue codeuse de l'axe horizontal :

- Réglez la position horizontale de toutes les voies et des formes d'ondes mathématiques (la position du déclencheur est située au centre de l'écran). La résolution de cette commande varie en fonction du réglage du temps.
- 2. Lorsque vous appuyez sur la roue de l'axe horizontal, vous pouvez régler la position horizontale à zéro.

• La roue codeuse en position "Time/div" :

- On utilise cette roue pour changer l'échelle horizontale de temps afin d'amplifier ou de compresser la forme d'onde. Si l'acquisition de la forme d'onde est stoppée (en utilisant le bouton RUN/STOP ou SINGLE), tournez la roue codeuse Time/div pour amplifier ou compresser la forme d'onde.
- Sélectionner la position time/div horizontal (facteur d'échelle) pour la fenêtre principale ou la fenêtre base de temps. Lorsque « Window Zone » est activée, la fenêtre de base de temps change, ce qui provoque une modification de la largeur de « Window Zone ».

Mode affichage « scan »

Lorsque le bouton Time/Div est fixé sur 100 ms/div ou sur une valeur inférieure et que le mode de déclenchement est fixé sur « Auto », l'oscilloscope entre dans un mode d'affichage spécial. Avec ce mode, l'affichage de la forme d'onde est mis à jour de gauche à droite. Ainsi le déclenchement et la commande de position horizontale des formes d'onde ne fonctionnent pas durant le mode « scan ».

Zone de fenêtre

Pour plus de détails, vous devez utiliser l'option « Window zone » pour définir un segment d'une forme d'onde. Cette fonction permet de zoomer sur une partie précise de la forme d'onde capturée. Le réglage de la fenêtre base de temps ne peut pas être en mode plus lent que le réglage de la base de temps principale.

Vous pouvez tourner le bouton de l'axe horizontal et du time/div pour élargir ou compresser les formes d'ondes dans la zone de fenêtre. Si vous souhaitez voir une partie précise de la forme d'onde en détails, suivez les instructions suivantes :

- 1. Appuyez sur le bouton « Hori MENU » pour accéder au menu horizontal.
- 2. Tournez la roue « Time/div » pour changer l'échelle principale de base temps.
- Appuyez sur le bouton d'option Delayed » (retardé) et sélectionnez le mode « On ».

Figure 3.20 – Menu du délai horizontal

 Tournez la roue de l'axe horizontal (ajustez la position de la fenêtre) afin de sélectionner la fenêtre dont vous avez besoin. La forme d'onde agrandie s'affichera simultanément dans la 2^{ème} moitié de l'écran du bas.

3.11 Système de déclenchement

Le Déclenchement définit le moment où l'oscilloscope acquiert des données et affiche la forme d'onde. Lorsque le déclenchement est réglé correctement, l'oscilloscope convertit des affichages instables ou des écrans blancs en des formes d'ondes cohérentes.

Voici les trois boutons et la roue codeuse dans la zone de déclenchement :

Figure 3.21 – Commandes de déclenchement

- **Bouton « TRIG MENU »** : Appuyez sur le bouton "TRIG MENU" pour afficher le menu de déclenchement.
- Roue codeuse « LEVEL » : elle permet de régler la tension du signal correspondant au point de déclenchement dans le but d'effectuer un échantillonnage. Appuyez sur la roue "LEVEL" pour régler le niveau du déclenchement à zéro.
- Bouton « SET TO 50% » : Utilisez le bouton « SET TO 50% » pour stabiliser une forme d'onde rapidement. L'oscilloscope peut régler automatiquement le niveau de

déclenchement à une valeur moyenne entre les niveaux de tension maximale et minimale. Cela est utile lorsque vous connectez un signal sur la sortie EXT TRIG BNC et que vous mettez la source de déclenchement sur Ext ou Ext/5.

 Bouton « FORCE » : Utilisez le bouton « Force »pour compléter l'acquisition en cours de la forme d'onde, que l'oscilloscope détecte un déclenchement ou non. Cela est utile pour les acquisitions SINGLE et pour le mode de déclenchement Normal.

Source du signal

Vous pouvez utiliser les options de sources de déclenchement pour sélectionner le signal que l'oscilloscope utilise comme déclenchement. La source peut être n'importe quelle voie d'entrée EXT TRIG BUS, ou le secteur. (disponible uniquement avec un déclenchement de front).

Type de déclenchement

L'oscilloscope dispose de cinq types de déclenchement: par front, sur signaux vidéo, sur largeur d'impulsion, sur pente, et alternatif.

Déclenchement par front

Utiliser le déclenchement par front pour déclencher sur le front du signal d'entrée de l'oscilloscope, au seuil du déclenchement fixé.

Options	Paramètres	Explications
Туре	Edge (Front)	Le front montant ou descendant du signal d'entrée est utilisé pour déclencher.
Source	CH1 CH2	Déclenchements sur CH1 ou CH2 que la forme d'onde soit affichée ou non.

Table 3.16 – Menu dı	u déclenchement	par front
----------------------	-----------------	-----------

	EXT	N'affiche pas le signal de déclenchement ; l'option Ext utilise le signal connecté à l'entrée EXT TRIG et permet un choix de niveau de déclenchement de -1.2V à +1.2V.
	EXT/5	Identique à l'option Ext mais atténue le signal d'un facteur cinq et permet un choix de niveau de déclenchement de +6V à -6V. Cela élargi la gamme de niveau de déclenchement.
	AC Line	Cette sélection utilise un signal extrait de l'alimentation secteur en tant que source de déclenchement ; le couplage de déclenchement est réglé sur DC et le niveau de déclenchement sur 0 volts.
Pente (Slope)	⊥ T+ T+	Déclenchement sur le front montant du signal de déclenchement. Déclenchement sur le front descendant du signal de déclenchement. Déclenchement sur le front montant et descendant du signal de déclenchement.
Mode	Auto	L'oscilloscope va générer un signal de déclenchement interne qui palliera à l'absence d'un signal de déclenchement correct; ce mode permet un affichage correct pour des réglages de base de temps de 100 ms/div ou plus faible encore.
	Normal	Ce mode permet de visualiser uniquement des formes d'onde déclenchées; Lorsque vous utilisez ce mode, l'oscilloscope n'affiche une forme d'onde qu'après le premier déclenchement.
	Single	Lorsque vous souhaitez que l'oscilloscope fasse une acquisition unique, appuyez sur le bouton « SINGLE ».

Réglages	Accès au menu « Trigger setup » (menu de
(Set up)	reglages de declenchement) (voir Table3.14).

Table 3.17 – Menu de réglages du déclenchement

Options	Réglages	Explications
Couplage (Coupling)	DC	Toutes les composantes du signal sont acceptées.
	AC	La composante DC du signal est bloquée et les signaux en dessous de 50 Hz sont atténués.
	Rejet HF (HF Reject)	Atténue les composants de hautes fréquences (au-delà de 150 kHz)
	Rejet LF (LF Reject)	Bloque la composante DC et atténue les composantes basses fréquences (en dessous de 7 kHz)
Holdoff		Utilise la roue universelle pour ajuster l'attente (sec), la valeur d'attente est affichée.
Réinitialisation Holdoff		Réinitialise le temps d'attente à 100ns.
(Reset)		
Retour		Retourner à la première page du menu
(Return)		principal de déclenchement.

Figure 3.22 – Ecran du menu de déclenchement

Instructions:

- 1. Choix du type de déclenchement :
 - Appuyez sur le bouton « TRIG MENU » pour afficher le menu « trigger » (déclenchement).
 - Appuyez sur le bouton « type » pour sélectionner « edge » (par front).
- 2. Choix de la source
 - En fonction du signal d'entrée, appuyez sur le bouton « source » et sélectionnez "CH1", "CH2", "EXT", "EXT/5" ou "AC Line".

3. Choix de la pente

Appuyez sur le bouton « Slope » pour choisir

" _**f** "," **1** " ou " ↑↓ "

4. Choix du mode de déclenchement

 Appuyez sur le bouton « Trigger mode » et sélectionnez "Auto", "Normal" ou "Single". **Auto:** Le signal se rafraichit à une cadence rapide même si les conditions de déclenchement ne sont pas remplies.

Normal: Le signal se rafraichit lorsque la condition de déclenchement est remplie puis attend le prochain déclenchement si les conditions du 1_{er} déclenchement ne sont pas remplies.

Single: L'oscilloscope acquiert une forme d'onde lorsque la condition est remplie et ensuite s'arrête.

5. Réglage du couplage de déclenchement

- Appuyez sur le bouton « Set Up » pour accéder au menu « Trigger setup » (réglages de déclenchement).
- Appuyez sur le bouton « Coupling » et sélectionnez "DC", "AC", "HF Reject" ou "LF Reject".

Déclenchement sur largeur d'impulsion

Utilisez le déclenchement de «Pulse Width » (largeur d'impulsion) pour déclencher sur des impulsions particulières.

Options	Paramètres	Explications
Туре	Pulse	Sélectionner l'impulsion qui correspond à la condition de déclenchement.
Source	CH1 CH2 EXT EXT/5 AC Line	Choisir la source du signal d'entrée.

Table 3.18 – Menu 1 du déclenchement d'impulsion

Moment (When)	 ☐ (Impulsion positive de largeur inférieure à celle spécifiée) ☐ ☐ (Impulsion positive de largeur supérieure à celle spécifiée) ☐ ☐ (Impulsion positive de largeur égale à celle spécifiée) ☐ ☐ (Impulsion négative de largeur inférieure à celle spécifiée) ☐ ☐ (Impulsion négative de largeur supérieure à celle spécifiée) ☐ ☐ (Impulsion négative de largeur supérieure à celle spécifiée) ☐ ☐ (Impulsion négative de largeur supérieure à celle spécifiée) ☐ ☐ (Impulsion négative de largeur supérieure à celle spécifiée) 	Sélectionner le type de comparaison entre l'impulsion de déclenchement et la valeur sélectionnée dans l'option « Pulse Width ».	
Réglage de la largeur (Set Width)	20.0ns ~ 10.0s	Réglage de la largeur d'impulsion à l'aide la roue universelle.	
Page suivante (Next Page)	Page 1/2	Accéder à la seconde page.	

Figure 3.23 – Menu 1 du déclenchement sur impulsion

Options	Paramètres	Description
Туре	Pulse	Sélectionner l'impulsion qui correspond à la condition de déclenchement.
Mode	Auto Normal single	Choisir le type de déclenchant ; le mode Normal est meilleur pour la plupart des applications de déclenchement « Pulse width ».
Réglage (Set up)		Accéder au menu « Trigger setup ».
Page suivante (Next Page)	Page 2/2	Appuyer sur ce bouton pour retourner à la première page.

Table 3.19 – Menu 2 du déclenchement sur impulsion

Figure 3.24 – Menu 2 du déclenchement sur impulsion
Instructions:

- 1. Choix du type
 - Appuyez sur le bouton « TRIG MENU » pour afficher le menu « Trigger » (déclenchement).
 - Appuyez sur le bouton « Type » et sélectionnez « Pulse »

2. Choix de la condition de configuration

• Appuyez sur le bouton « When » et sélectionnez "

3. Choix de la largeur d'impulsion

• Tournez la roue universelle pour définir la largeur.

Déclenchement sur signaux vidéo

Il s'agit du déclenchement sur trames ou lignes de signaux vidéo standards.

Options	Paramètres	Explications	
Туре	Video	Lorsque vous sélectionnez le mode Déclenchement sur signaux vidéo, vous devez fixer le couplage sur AC. Vous pouvez alors déclencher un signal vidéo NTSC ou PAL/SECAM.	
Source	CH1 CH2	Sélectionner le signal d'entrée qui sera le signal de déclenchement.	
	EXT EXT/5	Ext et Ext/5 utilisent le signal appliqué au connecteur EXT TRIG comme source.	
Polarity	(Normal)	Déclenchements sur le front négatif de l'impulsion de synchronisation.	

Table 3.20 – Menu 1 de déclenchement sur signaux vidéo

	└─└(Inversé) (Inverted)	Déclenchements inversés sur le front positif de l'impulsion de synchronisation.
Synchonisation (Sync)	Line Num All lines Odd field Even Field	Sélectionnez la synchronisation de vidéo appropriée.
Page suivante (Next Page)	Page 1/2	Accédez à la deuxième page du menu « Video trigger ».

Table 3.21 – Menu 2 de déclenchement sur signaux vidéo

Options	Paramètres	Explications
		Lorsque vous sélectionnez le
		type de déclenchement sur
		signaux vidéo, vous devez
Туре	Video	fixer le couplage sur AC. Vous
		pouvez alors déclencher un
		signal vidéo NTSC, Pal et
		SECAM.
Standard	NTSC	Sélectionnez le standard
Stanuaru	Pal/Secam	vidéo pour la synchronisation.
		L'oscilloscope va générer un
	Auto	signal de déclenchement
		interne qui palliera à
		l'absence d'un signal de
Mode		déclenchement correct; ce
		mode permet à l'affichage
		correct pour des réglages de
		base de temps de 100 ms/div
		or plus faible encore.
		Ce mode permet de visualiser
	Normal	uniquement des formes
		d'onde déclenchées valides;

		Lorsque vous utilisez ce
		mode, l'oscilloscope n'affiche
		une forme d'onde qu'après le
		premier déclenchement.
		Lorsque vous souhaitez que
		l'oscilloscope acquière une
	Single	capture unique d'une forme
		d'onde, appuyer sur le bouton
		« SINGLE ».
Réglages		Accès au menu « Trigger
(Set up)		setup ».
Page suivante	Dago 2/2	Retourner à la première page
(Next Page)	rage 2/2	du menu « Video trigger ».

Figure 3.25 – Menu du déclenchement sur signaux vidéo

Instructions :

- 1. Choix du type
 - Appuyez sur le bouton « TRIG MENU » pour afficher le menu « Trigger ».
 - Appuyez sur le bouton « Type » et sélectionnez « Video ».

2. Choix de polarité

3. Choix de la synchronisation

- Appuyez sur le bouton « Sync » pour choisir "All Lines", "Line Num", "Odd Field", et "Even Field".
- Si vous sélectionnez "Line Num", vous pouvez tournez la roue universelle pour régler le numéro de ligne choisi.

4. Choix du standard

- Appuyez sur "Next Page Page 2/2"
- Appuyez sur « Standard » pour choisir "PAL/SECAM" ou "NTSC".

Déclenchement sur pente

Déclencher sur une pente positive ou négative de forme d'onde en fonction du temps de l'oscilloscope.

Options	Paramètres	Explications
Туре	Pente (Slope)	Déclencher sur pente positive ou négative en fonction du temps
	(0.000)	
	CH1	Sélectionner la source de
Source	CH2	déclenchement.
	EXT	

Table 3.22 –	Menu 1	du déclench	nement sur	pente
				P

	EXT/5	
Moment	ी में में में	Sélectionner la condition de déclenchement.
(When)	│ ┿╪ ┺	
Temps (Time)	Régler le temps (Set time)	Tourner la roue universelle pour régler le temps de pente. L'échelle de temps est de 20ns à 10s.
Page suivante (Next Page)	Page 1/2	Accéder à la deuxième page du déclenchement sur pente.

Figure 3.26 – Menu 1 de déclenchement sur pente

Options	Paramètres	Explications
Turne	Pente	Déclenchement sur pente positive ou
туре	(Slope)	pente négative.
Vertical		Sélectionner le niveau de déclenchement
	_	qui peut etre ajuste par le bouton « Level ». Vous pouvez ajuster le « LEVEL
		A », « LEVEL B » ou les ajuster
	<u>_</u>	simultanément.
	₽ ₽	
Mode	Auto	L'oscilloscope va générer un signal de déclenchement interne qui palliera à l'absence d'un signal de déclenchement correct; ce mode permet l'affichage correct pour des réglages de base de temps de 100 ms/div or plus faible encore.
	Normal	Ce mode permet de visualiser uniquement des formes d'onde déclenchées valides; Lorsque vous utilisez ce mode, l'oscilloscope n'affiche une forme d'onde qu'après le premier déclenchement.
	Single	Si vous souhaitez que l'oscilloscope acquière une capture unique d'une forme d'onde, appuyer sur le bouton « SINGLE ».
Set up		Accès au menu « Trigger setup » (voir table 3.17).

Table 3.23 – Menu 2 de déclenchement sur pente

Page suivante	Page 2/2	Retourner à la première page du menu
(Next Page)		de déclenchement sur pente.

Figure 3.27 – Menu 2 de déclenchement sur pente

Instructions:

Suivez les étapes suivantes après avoir sélectionné « Slope trigger » (déclenchement sur pente):

- 1. Entrer un signal CH1 ou CH2.
- 2. Appuyez sur « AUTO ».
- 3. Appuyez sur « TRIG MENU » afin d'accéder au menu « Trigger ».
- 4. Appuyez sur « Type » et sélectionnez « Slope » (pente).
- 5. Appuyez sur « Source » pour choisir « CH1 » ou « CH2 ».
- 7. Appuyez sur « Time », tournez la roue universelle pour ajuster le temps de pente (montée ou descente)
- 8. Appuyez sur « Next Page Page ½ » pour accéder à la deuxième page du menu « Slope trigger »

- 9. Appuyez sur le bouton « Vertical » pour choisir le niveau de déclenchement qui peut être ajusté.
- 10. Tournez la roue « LEVEL ».

Déclenchement alterné

Le signal de déclenchement provient de deux voies verticales lorsque vous utilisez le déclenchement alterné. Ce mode vous permet d'observer deux signaux indépendants simultanément. Vous pouvez sélectionner différents types de déclenchement pour deux signaux verticaux. Les différents types sont notamment par front, par impulsion, sur signaux vidéo et sur pente. L'information de déclenchement des deux voies s'affiche en bas à droit de l'écran.

Figure 3.28 – Menu de déclenchement alterné

Table 3.24 – Menu 1 de déclenchement alterné en mode front

Options	Paramètres	Explications
Туре	Alterné (Alternate)	Lorsque vous utilisez le déclenchement alterné, le signal déclenché provient de deux voies verticales. Ce mode vous permet d'observer deux signaux indépendants simultanément.
Voies (Channels)	CH1-CH2	Règle les voies de déclenchement.
Source	CH1	Configure le mode de déclenchement pour le signal CH1.
	CH2	Configure le mode de déclenchement pour le signal d'entrée CH2.
Mode	Par front (Edge)	Règle le mode de déclenchement de la voie verticale sur Edge.
Page suivante (Next Page)	Page 1/2	Accès à la seconde page du menu de déclenchement.

Table 3.25 – Menu 2 de déclenchement alterné en mode front

Options	Paramètres	Explications
Pente (Slope)	لوالع	Déclenchement sur front montant. Déclenchement sur front descendant. Déclenchement sur front montant et descendant.
Réglages (Set up)		Accès au menu « Trigger setup » (voir table 3.17).
Page suivante (Next Page)	Page 2/2	Retourner à la première page du menu « Trigger ».

Options	Paramètres	Explications
Туре	Alterné (Alternate)	Lorsque vous utilisez le déclenchement alterné, le signal déclenché provient de deux voies verticales. Ce mode vous permet d'observer deux signaux indépendants simultanément.
Voies (Channels)	CH1-CH2	Règle les voies de déclenchement.
Source	CH1 CH2	Configure le mode de déclenchement pour le signal CH1. Configure le mode de déclenchement pour le signal d'entrée CH2.
Mode	Impulsion (Pulse)	Règle le type de déclenchement de la voie verticale sur « Pulse ».
Page suivante (Next Page)	Page 1/2	Accès à la seconde page du menu de déclenchement alterné

Table 3.26 – Menu 1 de déclenchement alterné en mode impulsion

Table 3.27 – Menu 2 de déclenchement alterné en mode impulsion

Options	Paramètres	Explications
Quand (When)		Sélectionne la façon de comparer l'impulsion de déclenchement relative à la valeur choisie pour le réglage de l'option « Set pulse width » (largeur d'impulsion)

Réglage	20.0ns-10.0s	En sélectionnant cette option, la roue
largeur		universelle peut se régler sur la
(Set Width)		largeur d'impulsion.
Réglages		Accès au menu « Trigger Setup » (voir
(Set up)		Table 3.17).
Page suivante	Page 2/2	Appuyez sur ce bouton pour
(Next Page)		retourner à la première page.

Table 3.28 – Menu 1 de déclenchement alterné en mode vidéo

Options	Paramètres	Explications
Туре	Alternative	Lorsque vous utilisez le
		déclenchement alterné, le signal
		déclenché provient de deux voies
		verticales. Ce mode vous permet
		d'observer deux signaux
		indépendants simultanément.
Voies (Channels)	CH1-CH2	Règle les voies de déclenchement.
		Configure le mode de
		déclenchement pour le signal CH1.
Source	CH1	
	CH2	Configure le mode de
		déclenchement pour le signal
		d'entrée CH2.
Mode	Vidáo	Règle le type de déclenchement de
	VIGEO	la voie verticale sur « Video ».
Novt Dago	Dago 1/2	Accès à la deuxième page du menu
Next Page	rage 1/2	« Alternative trigger »

Options	Paramètres	Explications
Polarité (Polarity)	└└ (Normal) └── (Inverted)	Déclenchements normaux sur fronts négatifs de l'impulsion de synchronisation. Déclenchements inversés sur fronts positifs de l'impulsion de synchronisation.
Sync	Line Num All lines Champ impair (Odd field) Champ pair (Even Field)	Choisi la synchronisation vidéo appropriée.
Standard	NTSC Pal/Secam	Sélectionne le standard vidéo et le numéro de ligne.
Réglages (Set up)		Accès au menu « Trigger Setup » (voir Table 3.17).
Page suivante (Next Page)	Page 2/2	Retourner à la première page.

Table 3.29 – Menu 2 de déclenchement alterné en mode vidéo

Table 3.30 – Menu 1 de déclenchement alterné en mode pente

Options	Paramètres	Explications
Туре	Alterné	Lorsque vous utilisez le déclenchement
	(Alternative)	alterné, le signal déclenché provient de
		deux voies verticales. Ce mode vous
		permet d'observer deux signaux

		indépendants simultanément.
Voies (Channels)	CH1-CH2	Règle les voies de déclenchement.
Source	CH1 CH2	Configure le mode de déclenchement pour le signal CH1. Configure le mode de déclenchement pour le signal d'entrée CH2.
Mode	Slope	Règle le type de déclenchement de la voie verticale sur « Slope ».
Page suivante (Next Page)	Page 1/2	Accès à la deuxième page du déclenchement alternatif.

Table 3.31 – Menu 2 de déclenchement alterné en mode pente

Options	Paramètres	Explications
Moment (When)	<u></u> <u></u>	Choisir la condition de déclenchement sur pente.
Temps	も	Tournez la roue universelle pour régler
(Time)	Réglage du	le temps de pente. La variation de
	temps	temps est de 20ns à 10s.
	(Set time)	
Vertical		Sélectionner le niveau de
		déclenchement qui peut être ajusté par
	⇒ ∕∓	le bouton « LEVEL » Vous pouvez
		ajuster le « LEVEL A », « LEVEL B » ou
		les ajuster simultanément.
		-
Réglage		Accès au menu « Trigger setup » (voir
(Set up)		Table 3.17).

Page suivante	Page 2/2	Retour à la première page du menu
(Next Page)		« Alternative trigger ».

Instructions:

Pour utiliser le déclencheur alterné, suivez les étapes suivantes :

- 1. Entrez deux signaux indépendants dans les voies CH1 et CH2.
- 2. Appuyez sur « AUTO »
- Appuyez sur « TRIG MENU » pour accéder au menu de déclenchement.
- 4. Appuyez sue « Type » pour sélectionner « Alternative ».
- 5. Appuyez sur « Channels » (voies) et sélectionnez « CH1-CH2 ».
- 6. Appuyez sur « Source » et choisissez « CH1 ».
- Appuyez sur CH1 et tournez le bouton « Time/div » pour optimiser l'affichage de la forme d'onde.
- Appuyez sur « Mode » et choisissez entre « Edge », « Pulse », « Slope » et « Video ».
- Configurez le déclenchement en fonction du déclenchement sur front.
- 10. Appuyez sur « Source » pour sélectionner « CH2 ».
- 11. Appuyez sur CH2 et tournez le bouton « Time/div » pour optimiser l'affichage de la forme d'onde.
- 12. Répétez les étapes 8 et 9.

Couplage

Utilisez « Couplage » pour vous assurez que le signal passe à travers le circuit de déclenchement. Cela est utile pour obtenir une forme d'onde stable.

Si vous utilisez le couplage déclenchement, vous devez appuyer sur « TRIG MENU » puis sélectionner un déclenchement « Edge », « Pulse », « Video », ou « Slope ». Ensuite, sélectionnez l'option « Coupling » dans le menu « Set up ».

Position

Le contrôle horizontal établit le temps entre la position déclenchement et le centre de l'écran. Vous pouvez ajuster le bouton de « Position » horizontal pour voir les données de la forme d'onde avant et après le déclenchement, ou d'un des deux. Lorsque vous changez la position horizontale d'une forme d'onde, vous changez également le temps entre le déclenchement et le centre de l'affichage en cours. (Cela semble déplacer la forme d'onde à droite ou à gauche sur l'affichage).

Pente et niveau

La pente ainsi que les contrôles de niveau aident à définir le déclenchement. L'option Slope (type de déclenchement par front uniquement) détermine si l'oscilloscope trouve le point de déclenchement sur le front montant ou descendant d'un signal.

Le bouton du niveau de déclenchement détermine l'endroit où le déclenchement sur front se produit.

Figure 3.29 – Schéma d'un front montant et descendant

NOTE: Appuyez sur « SINGLE » si vous souhaitez que l'oscilloscope capture une forme d'onde unique.

Le couplage de déclenchement affecte seulement le signal qui passe par le système de déclenchement. Il n'affecte pas la passe bande ou le couplage du signal affiché à l'écran.

Les déclenchements sur signaux de synchronisation horizontale (ligue) se font sur fronts descendant. Si les signaux utilisent des synchronisations inversées (fronts montant), utilisez l'inversion de polarité.

Déclenchement Holdoff

Pour produire un affichage stable de formes d'ondes complexes, utilisez la fonction de déclenchement Holdoff. Holdoff est le laps de temps qui s'écoule entre le moment où l'oscilloscope détecte un déclenchement et le moment où il est prêt pour le déclenchement suivant. L'oscilloscope ne se déclenchera pas pendant le temps Holdoff. Pour un train d'impulsions, vous pouvez ajuster ce temps de manière à ce que l'oscilloscope déclenche seulement à la première impulsion du train.

Figure 3.30 – Schéma du déclenchement avec Holdoff

Si vous souhaitez changer le temps du Holdoff, suivez les étapes cidessous :

- 1. Appuyez sur « TRIG MENU » pour afficher le menu « TRIG ».
- 2. Appuyez sur « Type » et sélectionnez le type de déclenchement.
- 3. Appuyez sur « Set up » pour accéder au menu « Trigger setup ».
- 4. Appuyez sur « Holdoff » et tournez la roue universelle pour changer le temps jusqu'à ce que la forme d'onde se déclenche de façon stable.

NOTE: Utiliser la fonction Holdoff pour stabiliser l'affichage d'une onde apériodique.

3.12 Système d'acquisition de signaux

Indiqué ci-dessous, le bouton ACQUIRE permet d'accéder au menu « Acquiring Signals » :

Options	Paramètres	Explications
Acquisition	Echantillonnage (Sampling)	S'utilise pour échantillonner et afficher avec précision la plupart des formes d'onde.
	Détection crête (Peak Detect)	Détecte le bruit et réduit la possibilité de repliement.
	Moyenne (Average)	S'utilise pour réduire les bruits aléatoires et non corrélés du signal affiché.
	Moyennes (Averages) (4, 16, 32, 64, 128, 256)	Choisi le nombre d'échantillons de la moyenne.
Sinx/x	Sinx x	Utilise l'interpolation sinusoïdale. Utilise l'interpolation linéaire.
Mode	Temps réel (Equ time Real time)	Règle le mode d'échantillonnage au temps équivalent. Règle le mode d'échantillonnage sur temps réel.
Sa Rate		Affiche le taux d'échantillonnage.

Table 3.32 – Menu de la fonction Acquire

Lorsque vous capturez un signal, l'oscilloscope le converti sans forme numérique et affiche une forme d'onde. Le mode d'acquisition définit la façon dont le signal est numérisé et le réglage de la base de temps affecte le laps de temps et le niveau des détails dans l'acquisition.

 <u>Echantillonnage (Sampling)</u>: Dans ce mode d'acquisition l'oscilloscope échantillonne à intervalles réguliers pour former un signal. Ce mode représente (plus précisément) les signaux la plupart du temps.

Avantage : Vous pouvez utiliser ce mode pour réduire le bruit aléatoire.

Inconvénient : Ce mode n'acquière pas les variations rapides dans le signal qui sont susceptibles d'apparaître entre les

échantillons. Un repliement est possible à cause des impulsions étroites qui manqueraient. Dans ces cas là, vous devez utiliser le mode de détection crête pour acquérir des données.

Figure 3.31 – Menu Acquire (d'Acquisition)

Détection crête : Le mode de détection crête capture les maximums et les minimums d'un signal puis recherche parmi toutes les acquisitions la plus grande et la plus petite. Avantage: Avec ce mode, l'oscilloscope peut acquérir et afficher des impulsions étroites qui ont avoir été manquées en mode « Sample » (échantillonnage)

Inconvénient: Le bruit sera plus important avec ce mode.

Figure 3.32 – Détection crête

- <u>Moyenne :</u> L'oscilloscope acquière plusieurs formes d'onde, en fait une moyenne et affiche les formes d'onde qui en résulte.
- Avantage: Vous pouvez utiliser ce mode pour réduire le bruit aléatoire.

Figure 3.33 – Moyenne d'acquisition

- Echantillonnage en temps équivalent (Equivalent Time Sampling): L'échantillonnage en temps équivalent peut atteindre plus de 20ps en résolution horizontale (équivalent à 50GSa/s). Ce mode est tout à fait adapté à l'observation de formes d'ondes répétitives.
- Échantillonnage en temps réel (Real Time Sampling): Le taux d'échantillonnage maximum en temps réel est de 1GSa/s.
- « RUN/STOP » (bouton démarrage/arrêt) : Appuyez sur ce bouton lorsque vous souhaitez que l'oscilloscope acquière des formes d'onde de façon continue. Appuyez à nouveau sur ce bouton pour stopper l'acquisition.
- « SINGLE » : Appuyez sur ce bouton pour acquérir une seule forme d'onde. A chaque fois que vous appuyez sur ce bouton, l'oscilloscope commence à acquérir une autre forme d'onde. Une fois que l'oscilloscope a détecté un déclenchement, il termine l'acquisition puis s'arrête.

Lorsque vous appuyez sur RUN/STOP ou SINGLE (unique) pour commencer une acquisition, l'oscilloscope passe par les étapes cidessous :

- 1. Acquiert suffisamment de données pour remplir la portion de forme d'onde située à gauche du point de déclenchement. On appelle aussi cette étape, le prédéclenchement.
- 2. Continue d'acquérir des données tout en attendant que les conditions de déclenchement soient remplies.
- 3. Détecte la condition de déclenchement.
- 4. Continue d'acquérir des données jusqu'à ce que l'acquisition de la forme soit complète.
- 5. Affiche les formes d'ondes nouvellement acquises.
- Base de temps (Time Base): L'oscilloscope numérise les formes d'onde en acquérant la valeur d'amplitude d'un signal d'entrée. La base de temps vous permet de contrôler la fréquence de numérisation des valeurs. Pour ajuster la base de temps sur une échelle horizontale qui s'adapte à vos réglages, utilisez le bouton « Time/div ».
- **Repliement (Time Domain Aliasing):** Le phénomène de repliement survient lorsque l'oscilloscope n'échantillonne pas le

signal assez rapidement pour construire une forme d'onde précise. Lorsque cela arrive, l'oscilloscope affiche une forme d'onde avec une fréquence inférieure à la forme d'onde d'entrée actuelle ou bien déclenche et affiche une forme d'onde instable.

Figure 3.34 – Schéma de repliement

Instructions:

Réglage du format d'échantillonnage

Vous pouvez appuyer sur « Acquisition » ou tourner la roue universelle pour sélectionner le mode « Sampling », « Peak detect » ou « Average ».

Réglage des moyennes

Lorsque vous sélectionnez le format « Average », vous pouvez appuyer sur le bouton « Averages » et sélectionner « 4 », « 16 », « 32 », « 64 », « 128 » ou « 256 ».

Réglage de l'interpolation

Vous pouvez sélectionner l'interpolation Sinx ou l'interpolation linéaire.

Réglage du mode d'échantillonnage

Appuyez sur « Mode » pour sélectionner « Real time » ou « Equ time ».

Réglage du taux d'échantillonnage

Le taux d'échantillonnage est lié à la base de temps. Ajustez ce taux en tournant le bouton « Time/div » sur le panneau avant. Le taux d'échantillonnage s'affiche alors sous « Sa rate ».

3.13 Système d'affichage

La fonction d'affichage peut se régler lorsque vous appuyez sur « DISPLAY ».

Options	Paramètres	Explications
Туре	Vecteurs (Vectors) Points (Dots)	Les vecteurs comblent l'espace entre les points adjacents affichés. Il n'y a aucun lien entre les points d'échantillonnage adjacent.
Persistance (Persist)	Off 1 seconde 2 secondes 5 secondes Infinite (infini)	Fixe la durée pendant laquelle chaque point de l'échantillonnage reste visible.
Intensité (Intensity)	€ <intensity></intensity>	Règle l'intensité de la forme d'onde.
Luminosité (Brightness)	€ ◆Brightness>	Règle la luminosité du réticule.
Page suivante (Next Page)	Page 1/3	Accès à la deuxième page.

Table 3.33 – Menu 1 du système d'affichage

Figure 3.35 – Menu 1 d'affichage

Options	Paramètres	Explications
Format	YT XY	Le format YT affiche la tension (échelle verticale) en fonction du temps (échelle horizontale). Le format XY affiche un point à chaque fois qu'un échantillon est relevé sur la voie 1 et la voie 2.
Ecran (Screen)	Normal Inversé	Règle le mode normal. Règle le mode d'affichage avec inversion des couleurs de l'écran.
Graticule (Grid)		Affiche les graticules et les axes sur l'écran. Efface les graticules. Efface les graticules et les axes.
Menu Display	2sec 5sec 10sec 20sec	Règle le temps d'affichage sur l'écran.

Table 3.34 – Menu 2 du système d'affichage

	Infinite (infini)	
Page suivante (Next Page)	Page 2/3	Accès à la deuxième page du menu « Display ».

Figure 3.36 – Menu 2 d'affichage

Table 3.35 – Menu 3 du système d'affichage

Options	Paramètres	Explications
Style	Classical	Règle le style de l'écran.
(Skin)	Modern	
	Tradition	
	Succinct	
Page suivante	Page 3/3	Accès à la première page du
(Next Page)		menu.

Instructions:

Réglage du type d'affichage de la forme d'onde

- 1. Appuyez sur « DISPLAY » pour accéder au menu « Display ».
- 2. Appuyez sur « Type » pour choisir « Vectors » ou « Dots ».

Configuration de la persistance

Appuyez sur « Persist » pour sélectionner « Off », « 1 Sec », « 2 Sec », « 5 Sec » ou « Infinite ». Vous pouvez utiliser cette option pour afficher des formes d'ondes spéciales.

Figure 3.37 – Ecran de persistance

Réglage de l'intensité

Appuyez sur « Intensity » et tournez la roue universelle pour ajuster l'intensité des formes d'onde.

Réglage de la luminosité

Appuyez sur « Brightness » et tournez la roue universelle pour ajuster la luminosité de la grille.

Réglage du format d'affichage

- 1. Appuyez sur « Next page » pour accéder au deuxième menu d'affichage.
- 2. Appuyez sur « Format » pour choisir « YT » ou « XY ».

Réglage de l'écran

Appuyez sur « Screen » pour sélectionner « Normal » ou « Inverted » pour configurer la couleur d'affichage de l'écran.

Réglage de la graticule

Appuyez sur « Grid » et sélectionner « 🔲 », «

» ou

« » pour configurer l'écran de sorte à afficher ou non une grille.

Réglage de l'affichage du menu

Appuyez sur « Menu Display » pour sélectionner « 2 sec », « 5sec », « 10sec », « 20sec » ou « Infinite » pour régler le temps d'affichage du menu sur l'écran.

Réglage Skin

Appuyez sur « Skin » ou tournez la roue universelle pour sélectionner « Classical », « Modern », « Traditional » ou « Succinct ».

Format X-Y

L'utilisation du format XY permet différentes analyses avec par exemple la représentation des courbes de Lissajous. Le format place la tension sur la voie 1 contrairement à la voie 2 puisque la voie 1 est située sur l'axe horizontal et la voie 2 sur l'axe vertical. L'oscilloscope utilise le mode d'acquisition par échantillonnage sans déclenchement et affiche les données avec des points.

NOTE: L'oscilloscope peut capturer une forme d'onde normale en mode YT sur n'importe quel échantillonnage. Vous pouvez voir la même forme d'onde en mode XY.

Pour se faire, arrêtez l'acquisition et changez l'affichage au format XY.

Instructions:

- Voie 1 Volt/div et la POSITION verticale définit l'échelle horizontale et la position.
- Voie 2 Volt/div et la POSITION verticale définit l'échelle horizontale et la position.
- Tourner la roue time/div pour régler le taux d'échantillonnage.
- Les fonctions suivantes sont interdites en forme d'affichage XY :
 - o Référence de forme d'onde et d'onde mathématique
 - o Curseur
 - Auto (Réinitialise le format d'affichage à YT)
 - Contrôle de déclenchement
 - Bouton de position horizontale
 - Type d'affichage vecteur
 - o Affichage Scan

3.14 Système de mesure

L'oscilloscope affiche la tension en fonction du temps et teste la forme d'onde affichée. D'autres techniques de mesures telles que Échelle, Curseur et Mesure automatique sont disponibles.

NOTE: Les boutons CURSORS et MEASURE peuvent être désactivés. Consultez « Education Mode » pour plus d'informations.

Mesure rapide avec le graticule

Cette méthode vous permet de faire une estimation rapide et visuelle. Vous pouvez, par exemple, mesurer l'amplitude d'une courbe avec une précision d'un peu plus de 100 mV. Vous pouvez faire de simples mesures en comptant le plus grand et le plus petit graticule à l'aide des divisions et multiplier ensuite par le facteur d'échelle. Par exemple, si vous comptiez 5 graticules verticales maximales (par une opération de division) entre les valeurs maximums et minimums d'une forme d'onde en sachant que le facteur d'échelle est de 100 mV/div, vous pourriez alors facilement calculer la tension (crête à crête) comme suit :

Mesure avec les curseurs

Appuyez sur « CURSORS » pour afficher le menu « Cursor ». La mesure avec les curseurs possède trois modes : Manual (manuel) , Track (asservi) , et mesure Auto.

Mode manuel

Options	Paramètres	Explications
Cursor	Manual	Dans ce menu, configure la mesure
Mode	Widfludi	du curseur manuel.
Туре	Tension (Voltage)	Utiliser le curseur pour mesurer la tension.
	Temps	Utiliser le curseur pour mesurer le
	(Time)	temps.
Source	CH1 CH2 MATH REFA REFB	Sélectionne la voie du signal d'entrée.
Cur A		Pour sélectionner cette option, utiliser la roue universelle pour
		Pour sélectionner cette ontion
Cur B		utiliser la roue universelle pour
Ð		ajuster le curseur B.

Table 3.36 – Menu du curseur manuel

Dans ce mode, l'écran affiche deux curseurs parallèles horizontaux ou des curseurs parallèles verticaux pour mesurer la tension ou le temps. Vous pouvez déplacer le curseur en tournant la roue universelle. Avant d'utiliser

les curseurs, vous devez vous assurer que vous avez réglé la source du signal comme la voie à mesurer.

- **Curseur de tension (Voltage Cursor)**: les curseurs de tension apparaissent comme des lignes horizontales sur l'affichage et mesurent les paramètres verticaux.
- Curseur de temps (Time Cursor): les curseurs de temps apparaissent comme des lignes verticales sur l'affichage et mesurent les paramètres horizontaux.
- **Curseurs mobiles (Cursor Moving)**: Utiliser la roue universelle pour déplacer le curseur 1 et le curseur 2. Ils ne seront déplacés que lorsque les options de curseur correspondantes sont sélectionnées. La valeur du curseur s'affichera en bas à gauche et en haut à gauche de l'écran lorsque vous déplacez le curseur.

Suivez les étapes suivantes pour faire des mesures de curseurs manuellement :

- 1. Appuyez sur « CURSOR » pour accéder au menu « Cursor ».
- 2. Appuyez sur « Cursor mode » et sélectionnez « Manual ».
- 3. Appuyez sur « Type » et sélectionnez « Voltage » ou « Time ».
- Appuyez sur « Source » pour sélectionner "CH1", "CH2", "MATH", "REFA", "REFB" en fonction de la voie du signal d'entrée.
- 5. Sélectionnez « Cur A », tournez la roue universelle pour ajuster le curseur A
- 6. Sélectionnez « Cur B », tournez la roue universelle pour ajuster le curseur B.
- 7. Les valeurs de mesures sont affichées en haut à gauche de l'écran.

Si le type de mesure est réglé sur « Voltage », les valeurs sont les suivantes :

- La tension augmente entre le curseur A et le curseur B : ΔV
- Valeur de Cur A: CurA
- Valeur de Cur B: Cur B

Si le type de mesure est réglé sur « Time », les valeurs sont les suivantes :

- Le temps augmente entre le curseur A et le curseur
 B : ΔT
- La réciproque de temps augmente entre le curseur A et le curseur B : 1/ΔT
- Valeur de Cur A: CurA
- Valeur de Cur B: Cur B

Figure 3.38 – Menu Cursor (Manuel)

Mode asservi (Track Mode)

Table 3.37 – Menu du mode Track

Options	Paramètres	Explications
Cursor Mode	Asservi (Track)	Dans ce mode configurer la mesure du curseur asservi.
Cursor A	CH1 CH2 NONE	Sélection de la source du signal qui va être mesuré par le curseur A.
Cursor B	CH1 CH2 NONE	Sélection de la source du signal qui va être mesuré par le curseur B.
Cur A		Choisir cette option, tourner la

も	roue « universelle » pour
_	régler la position horizontale
	du curseur A.
	Choisir cette option, tourner la
Cur B	roue « universelle » pour
も	régler la position horizontale
	du curseur B.

Dans ce mode, l'écran affiche 2 curseurs croisés. Le curseur croisé règle la position de la forme d'onde automatiquement. Vous pouvez simplement configurer la position horizontale du curseur en tournant la roue universelle. L'oscilloscope affiche les valeurs en haut à gauche de l'écran.

Pour faire des mesures de curseur Track, suivez les étapes suivantes :

- 1. Appuyez sur « CURSOR » pour accéder au menu de fonction de mesure de curseurs.
- 2. Appuyez sur « Cursor Mode » et sélectionnez « Track ».
- Appuyez sur « Cursor A » et sélectionnez la voie du signal d'entrée.
- 4. Appuyez sur « Cursor B » et sélectionnez la voie du signal d'entrée.
- 5. Sélectionnez « Cur A », tournez la roue universelle pour déplacer le curseur A horizontalement.
- 6. Sélectionnez « Cur B », tournez la roue universelle pour déplacer le curseur B horizontalement.
- 7. Les valeurs de mesure sont affichées en haut à gauche de l'écran :

A→T: Position horizontale du curseur A (Curseur temps centré autour du point central de l'écran).

A→V: Position verticale du curseur A (Curseur de tension centré autour du niveau de masse de la voie).

B→T: Position horizontale du curseur B (Curseur temps centré autour du point central de l'écran).

 $B \rightarrow V$: Position verticale du curseur B (Curseur de tension centré autour du niveau de masse de la voie).

 ΔT : Espace horizontal entre le curseur A et le curseur B (Valeur temps entre deux curseurs).

1/ΔT: La réciproque de l'espace horizontal entre le curseur A et le curseur B. (valeur de fréquence)

 ΔV : Espace vertical entre le curseur A et le curseur B (valeur de tension entre deux curseurs).

Figure 3.39 – Menu Cursor (Track)

<u>Mode auto</u>

Ce mode prendra effet avec des mesures automatiques. Les instruments afficheront les curseurs pendant qu'ils mesureront les paramètres automatiquement. Ces curseurs démontrent les significations physiques de ces mesures.

Pour faire des mesures de curseurs automatiques, suivez les étapes suivantes :

- 1. Appuyer sur CURSOR pour accéder au menu « Cursor measure ».
- Appuyer sur « Cursor Mode » pour accéder à un menu « Auto ».

 Appuyer sur « MESURE » pour accéder au menu « Auto cursor measure mode » pour sélectionner le paramètre que vous souhaitez mesurer.

Figure 3.40 - Auto Mode

Mesure automatique

Lorsque vous saisissez des mesures automatiques, l'oscilloscope effectue tous les calculs pour vous. Les mesures utilisent tous les points d'enregistrements dans la mémoire ; ceux-ci sont plus précis que les mesures effectuées en utilisant le graticule ou les mesures de curseur puisque ces mesures ne sont possible que par l'utilisation de points dans l'affichage et non par les points de données enregistrés par l'oscilloscope.

Appuyer sur MEASURE pour effectuer un test automatique.

Ceux-ci sont les 3 modes de mesures : Mesure de tension, mesure de temps et mesure de délai. Ce qui représente un total de 32 paramètres de mesures.

Options	Descriptions
Tension	Appuyez sur ce bouton pour accéder au menu de
(voltage)	mesure de tension.
Temps	Appuyez sur ce bouton pour accéder au menu mesure
(time)	de temps.
Délai (delay)	Appuyez sur ce bouton pour accéder au menu mesure
	de délai.
All Mea	Appuyez sur ce bouton pour accéder à tous les menus
	de mesures.
Retour	Appuyez sur ce bouton pour retourner à la page
(return)	d'accueil du menu de mesure.

Table 3.38 – Menu de mesure d'automatique

Figure 3.41 – Menu de mesure automatique

Options	Paramètres	Descriptions
Source	СН1, СН2	Sélection du signal source d'entrée pour la mesure de tension.
Туре	Vpp, Vmax, Vmin, Vpp, Vamp, Vtop, Vbase, Vavg, Mean, Vrms, Cycle Vrms, FOVShoot, FPREShoot, ROVShoot, RPREShoot	Appuyer sur « Type » ou tourner la roue universelle pour paramétrer les mesures de tension.
		Affiche l'icône correspondante et mesure la valeur de paramètre de la tension sélectionnée.
Retour (Return)		Retour à la première page du menu de mesure automatique.

Table 3.39 – Mesure de tension en mode automatique

Table 3.40 – Menu de temps en mode automatique

Options	Paramètres	Descriptions
Source	СН1, СН2	Choisir le signal d'entrée pour la mesure de temps.
Туре	Period, Freq, +Width, -Width, Rise Time, Fall Time, BWidth, +Duty, - Duty	Appuyer sur le bouton « Type » ou tourner la roue universelle afin
	d'accéder aux paramètres de	
----------	--	
	Affiche l'icône correspondante et mesure la valeur du paramètre choisi.	
Retour	Retour à la première page du menu de	
(Return)	mesure automatique.	

Table 3.41 – Menu de délai en mode automatique

Options	Paramètres	Descriptions
Source	CH1, CH2	Sélectionne une des deux
		sources de signal d'entrée
		pour la mesure de délai.
Туре	Phase, FRR, FRF, FFR, FFF, LRR,	Appuyez sur le bouton
	LRF, LFR, LFF	« Type » ou tournez la roue
		universelle pour
		sélectionner les paramètres
		de mesure de délai.
		Affiche l'icône
		correspondante et mesure
	₽ ₽ →Ω	la valeur de votre
	Store State State	paramètre de mesure de
	<u>≠7</u> ₽ <u></u> ₽	délai choisi.
Retour		Retour à la première page
(Return)		du menu de mesure
		automatique.

Options	Paramètres	Descriptions
Source	CH1 CH2	Sélectionne la voie du signal d'entrée.
Tension	On	Active toutes les fonctions de mesure pour mesurer les paramètres de tension.
(Voltage)	Off	Désactive toutes les fonctions de mesure pour mesurer les paramètres de tension.
Temps	On	Active toutes les fonctions de mesures pour mesurer les paramètres de temps
(Time)	Off	Désactive toutes les fonctions de mesures pour mesurer les paramètres de temps.
Délai (Delay)	On	Active toutes les fonctions de mesures pour mesurer les paramètres de délai. Désactive toutes les fonctions de
	Off	de délai.
Retour (Return)		Retour au menu « All measure main ».

Table 3.42 – Menu de toutes les mesures

Table 3.43 – Types de mesures

Type de mesures	Descriptions	
้ [_]`\]โ	La crête dont la tension est la plus positive sur la	
Vmax	forme d'onde entière.	
<mark>ՐւՐՆ</mark>	La crête dont la tension est la plus négative sur la	
Vmin	forme d'onde entière.	

1.00	Mesure la différence absolue entre la crête
Vpp	maximum et la crête minimum de la forme d'onde.
ttt	Mesure la tension la plus élevée de la forme
Vtop	d'onde.
¥-lit_lite	Mesure la tension la plus basse de la forme d'onde.
Vbase	
≭_[`1`	Tension comprise entre les valeurs Vhigh et Vlow
Vamp	d'une forme d'onde.
±∩∿∩∿	La moyenne arithmétique de la première période
Vavg	de la forme d'onde.
-4-7-4-7	La moyenne arithmétique de la forme d'onde.
Mean	
t a a	La tension de la moyenne quadratique pondérée
Crms	sur la première période de la forme d'onde.
*~~~	La tension de la moyenne quadratique pondérée
Vrms	sur la forme d'onde.
<u>تعامی</u>	Défini comme (Vmax-Vhigh)/Vamp après la
ROVShoot	montée de la forme d'onde.
* 2~~	Défini comme (Vmin-Vlow)/Vamp après la
FOVShoot	descente de la forme d'onde.
~~~~	Défini comme (Vmin-Vlow)/Vamp avant la
RPREshoot	montée de la forme d'onde.
	Défini comme (Vmax-Vhig)/Vamp avant la
FPREshoot	descente de la forme d'onde.
-4+	Mesure le temps compris entre 10% et 90% du
Rise Time	premier front montant de la forme d'onde.
	Mesure le temps compris entre 90% et 10% du
Fall Time	premier front descendante de la forme d'onde.
ŤŮŤ	Durée d'une salve.
BWid	Mesurée sur l'intégralité d'une forme d'onde.
F-1	+ Width mesure le temps compris entre le premier
	front montant et le prochain front descendant à
+ WIO	50% du niveau de la forme d'onde.

- Wid	-Width mesure le temps compris entre le premier front descendant et le prochain front montant à 50% du niveau de la forme d'onde.
⊥ + Duty	Mesure la première période de la forme d'onde. « Positive Duty Cycle » représente le ratio entre la largeur d'impulsion positive et la période.
− Duty	Mesure la première période de la forme d'onde. « Negative Duty Cycle » représente le ratio entre la largeur d'impulsion négative et la période.
Phase	Le montant d'une forme d'onde mène ou ralenti une autre au même moment. Exprimée en degré, 360 degrés représentent une période de forme d'onde.
≝⊓	Le temps compris entre le premier front montant
≝⊓,⊤Ĺ	de la source X et le premier front montant de la
FRR	source Y.
≝⊓	Le temps compris entre le premier front montant
_⊐RL_∵TL	de la source X et le premier front descendant de la
FRF	source Y.
_ரு	Le temps compris entre le premier front
ப்பூர்	descendant de la source X et le premier front
FFR	montant de la source Y.
_ரு	Le temps compris entre le premier front
_ருரு	descendant de la source X et le premier front
FFF	descendant de la source Y.
≝T	Le temps compris entre le premier front montant
_Tu;≇TL	de la source X et le dernier front montant de la
LRR	source Y.
当て二、	Le temps compris entre le premier front montant
」て、、元	de la source X et le dernier front descendant de la
LRF	source Y.
_ரு	Le temps compris entre le premier front
_ரு	descendant de la source X et le dernier front
LFR	montant de la source Y.

	Le temps compris entre le premier front
	descendant de la source X et le dernier front
LFF	descendant de la source Y.

# Si vous souhaitez mesurer les paramètres de tension, suivez les étapes suivantes :

- 1. Appuyez sur « MEASURE » pour accéder au menu de mesure automatique.
- 2. Appuyez sur le premier bouton « option » pour accéder au menu « second measurement ».
- 3. Sélectionnez le type de mesure. Si vous appuyez sur « Voltage », le menu « Voltage measurement » s'affichera à l'écran.
- 4. Appuyez sur « Source » et sélectionnez « CH1 », « CH2 » en fonction de la voie du signal d'entrée.
- 5. Appuyez sur « Type » et sélectionnez le type de paramètre que vous souhaitez mesurer. L'icône correspondante et la valeur seront affichées sous le paramètre de mesure.



Figure 3.42 – Mesure des paramètres Vpp

6. Appuyez sur « Return » pour retourner à la page principale du menu « Auto Measurement ». Le paramètre sélectionné ainsi que la valeur correspondante seront affichés en haut de l'écran de la page d'accueil. Vous pouvez afficher les autres paramètres et leurs valeurs sur la position correspondante de la même façon. L'écran peut afficher jusqu'à cinq paramètres à la fois.

# Si vous souhaitez mesurer les paramètres de temps en utilisant toutes les fonctions de mesure, suivez les étapes suivantes :

- 1. Appuyez sur « MEASURE » pour accéder au menu « Auto Measure ».
- 2. Appuyez sur le bouton de l'option du haut pour accéder à la deuxième page du menu « Auto Measure ».
- 3. Appuyez sur « All Mea » pour accéder au menu « All Measure ».
- 4. Appuyez sur « Source » pour sélectionner la voie du signal d'entrée.
- Appuyez sur « Time » et sélectionnez « On ». A présent, toutes les valeurs paramètres de temps seront affichées à l'écran en même temps, comme ci-dessous :



Figure 3.43 – Paramètres de mesure « All time »

## 3.15 Système de sauvegarde

Comme indiqué ci-dessous, le bouton « SAVE/RECALL » permet d'accéder au menu « Storage System».

L'oscilloscope peut sauvegarder et rappeler plus de 20 configurations et 10 formes d'ondes dans sa mémoire interne. Sur le panneau avant de l'oscilloscope se trouve un port USB hôte grâce auquel vous pouvez enregistrer des données de réglage, des formes d'ondes, des écrans et des fichiers .CSV dans une clé USB. Les données de configuration et des formes d'onde qui ont été sauvegardées sur une clé USB peuvent être rappelées à partir de l'oscilloscope. Pour les données d'image et les fichiers .CSV, un ordinateur est requis pour les consulter.

Utiliser l'écran « SAVE/RECALL »
 L'écran SAVE ALL est divisé en fonctions basées sur des répertoires (directory) et des fichiers (files).
 Les répertoires proposent des options pour la création de nouveaux répertoires (new directory), la suppression d'un dossier (delete folder) ou pour le chargement d'une donnée (load).

A72190D	Free: 1.70.GB	SAVE ALL
74721000	1100.1110.00	Modify
	540 L/D	Directory
EI BRUUUUU II.CSV	049 KB	
		New Dir.
		Dol Folder
		DerFolder
		Load
		Next Page
		Page 1/2
Choose a folder		

Figure 3.44 – Menu de sauvegarde générale (répertoire)

Les fichiers affichent des options pour créer un nouveau fichier (new file), supprimer un ficher (delete file), et en charger un (load).



Figure 3.45 – Menu de sauvegarde générale (fichiers)

## Rappels de fichiers

Le bouton « Load » est utilisé pour charger vos fichiers de réglage. Une fois que vous avez parcouru le fichier désiré et qu'il apparaît sur l'écran d'accueil, appuyez sur « Load » et le réglage est chargé depuis la clé USB.

**NOTE:** Le bouton « Load » est inactif (grisé) lorsque les formats de fichiers .BMP ou .CSV sont sélectionnés.

Les répertoires et dossiers ont des options qui permettent de renommer (rename) ou retourner (Return) à la page 2/2. Utiliser ces boutons respectivement pour renommer un dossier existant ou quitter l'écran « Save All ».

## Création de dossiers et de fichiers

Pour créer de nouveaux dossiers ou fichiers, appuyez sur le bouton « New Dir » ou « New File ». Ainsi, l'écran ci-dessous s'affichera :



Figure 3.46 – Menu de changement de nom

- Les options du menu « New file » sont les même que celles du menu « New folder ». Le bouton « Inputchar » ajoute le caractère choisi dans l'espace réservé au nom du dossier/fichier.
- Déplacez le curseur dans le champ nom en utilisant les boutons
   « → » et « ← ».
- Tournez la roue universelle pour déplacer les sélections de caractères. Lorsque le caractère désiré est affiché, appuyez sur la roue universelle ou appuyez sur «Inputchar » pour l'ajouter à la position spécifique dans le champ nom.
- Des options supplémentaires pour « Backspace », « DeleteCharacter » et « CleanName » sont disponibles et sont aussi accessibles de la même manière en utilisant la roue universelle.
- Lorsque la saisie du nom est satisfaisante, appuyer sur le bouton « Confirm » pour sauvegarder le fichier dans la mémoire interne. Ensuite, le message « Data Store Success » s'affiche brièvement et le nouveau nom de dossier/fichier apparait dans les données de votre clé USB.

## Configuration de sauvegarde et de rappel

### Sauvegarde des réglages dans l'appareil :

La configuration complète est enregistrée dans la mémoire non volatile. Lorsque vous rappeler cette configuration, l'oscilloscope se positionnera dans le mode dont la configuration a été sauvegardée. L'oscilloscope sauvegarde le réglage en cours si vous attendez trois secondes après le dernier changement, avant d'éteindre l'appareil. Il chargera ce réglage à la prochaine mise en marche.

Options	Paramètres	Descriptions
Turne	Réglages	Menu de réglage de
туре	(Setups)	Storage/Recall de l'oscilloscope.
Enregistrer	Appareil	Sauvegarde les réglages dans la
dans		mémoire interne de
(Save to)	(Device)	l'oscilloscope.
		Pour sélectionner la position de
Setup	No.1 to No.20	stockage, appuyez sur « Setup »
		ou tournez la roue universelle.
Enregistrement		Sauvegarde dans l'emplacement
(Save)		de stockage sélectionné.
Pappal		Charge à partir de l'emplacement
		de stockage indiqué par
(necall)		« Setup ».

#### Table 3.44 – Menu de sauvegarde de l'appareil



Figure 3.47 – Menu Save/Rec

# Pour enregistrer les réglages dans la mémoire interne de l'oscilloscope, suivez les étapes suivantes :

Par exemple : Sauvegarde dans la mémoire interne de la configuration qui règle l'affichage de la forme d'onde sur « Dots ».

- 1. Appuyez sur « SAVE/RECALL » pour accéder au menu « SAVE/RECALL ».
- 2. Appuyez sur « Type » et sélectionnez « Setup ».
- 3. Appuyez sur « Save to » et sélectionnez « Device ».
- 4. Appuyez sur « Setup » et sélectionnez « No.1 ».
- 5. Appuyez sur « DISPLAY » pour accéder au menu « Display ».
- 6. Appuyez sur « Type » et sélectionnez « Dots ».
- 7. Appuyez sur « SAVE/RECALL » pour accéder au menu « SAVE/RECALL ».
- 8. Appuyez sur « Save ».

#### Pour rappeler les réglages, suivez les étapes suivantes :

- 1. Appuyez sur « SAVE/RECALL » pour accéder au menu d'affichage « SAVE/RECALL ».
- 2. Appuyez sur « Type » et sélectionnez « Setups ».
- 3. Appuyez sur « Save to » et sélectionnez « Device ».

- 4. Appuyez sur « Setup » ou tournez la roue universelle et sélectionnez « No.1 ».
- 5. Appuyez sur « Recall ».

### Sauvegarde des réglages dans une clé USB :

Options	Paramètres	Descriptions
Туре	Setups	Menu pour les réglages de
		Storage/Recall.
Enregistrer sous	Fichier	Enregistre les données de
(Save to)	(File)	réglages dans une clé USB.
Enregistrement		Accès à l'interface
(Save)		« Save/Recall ».

#### Table 3.45 – Menu de sauvegarde des réglages sur clé USB



Figure 3.48 – Menu de configuration de la sauvegarde

#### Sauvegarde des réglages sur clé USB :

Par exemple : Sauvegarde sur clé USB de la configuration qui règle l'affichage de la forme d'onde sur « Dots ».

- 1. Appuyez sur « SAVE/RECALL » et sélectionnez « Setups ».
- Insérez une clé USB dans le port USB hôte prévu à cet effet et attendez que l'oscilloscope ait initialisé la clé USB (environ cinq secondes).
- 3. Appuyez sur « Save to » et sélectionnez « File ».
- 4. Appuyez sur « Save », ainsi vous accédez à l'interface « Save/Recall ».
- 5. Appuyez sur « New dir » pour créer un nouveau dossier.
- 6. Appuyez sur « Del folder » pour supprimer un dossier.
- 7. Appuyez sur « New file »pour créer un nouveau fichier.
- 8. Appuyez sur « Del file » pour supprimer un fichier.
- 9. Appuyez sur « next page », puis sur « Rename » pour changer le nom du fichier ou du dossier.
- 10. Tournez la roue universelle pour sélectionner le dossier et appuyez sur « Confirm » pour enregistrer le réglage sur la clé USB.

# Pour rappeler des données de réglage à partir de la clé USB, suivez les étapes suivantes :

- 1. Appuyez sur « SAVE/RECALL ».
- 2. Appuyez sur « Type » et sélectionnez « Setups ».
- Insérez une clé USB dans le port USB hôte prévu à cet effet et attendez que l'oscilloscope ai initialisé la clé USB (environ cinq secondes).
- 4. Appuyez sur « Save to » et sélectionnez « File ».
- 5. Appuyez sur « Save », ainsi vous accédez à l'interface « Save/Recall ».
- Choisissez le fichier que vous voulez et appuyez sur « Load » (en cinq secondes, il y aura un message « Read data success »). Les données de réglages ont été chargées à partir de la clé USB.

### Rappel des paramètres d'usine

Vous pouvez utiliser cette option pour appeler les paramètres d'usine.

Options	Paramètres	Descriptions
Tupo	Usine	Affiche les paramètres
туре	(Factory)	d'usine.
	Récupération	Efface toute la mémoire
	mémoire	(réglages, formes d'onde,
	(Depth Recover)	masques).
	Mise à jour	Met à jour le fichier de
	(Update cfg)	configuration.
	Rappel	Rappel les réglages d'usine.
	(Load)	

Table 3.46 – Menu de paramètres d'usine



Figure 3.49 – Paramètres d'usine

## Sauvegarde et rappel de forme d'onde

Sauvegarder des formes d'onde dans l'appareil

Options	Réglages	Descriptions
Туре	Formes d'onde	Sélectionne des formes d'onde
,,	(Waveforms)	a enregistrer ou a rappeler.
Enregistrer sous	Annaroil	Sauvegarder les formes d'onde
(Save to)		dans la mémoire interne de
(Save to)	(Device)	l'oscilloscope.
		Appuyez sur « waveform » ou
Mayoform	No 1 to No 20	tournez la roue universelle
wavelorm	NO.1 10 NO.20	pour sélectionner
		l'emplacement de stockage.
Enregistrement		Save waveform to the selected
(Save)		storage location.
		Rappeler la forme d'onde à
Rappel		partir de l'emplacement de
(Recall)		stockage choisi dans l'option
		« waveform ».

#### Table 3.47 – Menu de sauvegarde de formes d'onde dans l'appareil



Figure 3.50 – Ecran de sauvegarde de formes d'onde (en mémoire interne)

# Pour sauvegarder des formes d'onde en mémoire interne, suivez les étapes suivantes :

- 1. Entrez un signal sinusoïdal dans la voie 1 et appuyez sur « Auto ».
- 2. Appuyez sur « SAVE/RECALL » pour accéder au menu « SAVE/RECALL ».
- 3. Appuyez sur « Type » et sélectionnez « Waveforms ».
- 4. Appuyez sur « Save to » et sélectionnez « Device ».
- 5. Appuyez sur « Waveform » ou tournez la roue universelle pour sélectionner « No.1 ».
- 6. Tournez le bouton « Volts/div » ou « Time/div » pour ajuster la forme d'onde que vous souhaitez enregistrer.
- 7. Appuyez sur « Save ».

#### Pour rappeler des formes d'onde, suivez les étapes suivantes :

- 1. Appuyez sur « SAVE/RECALL » pour accéder au menu d'affichage « SAVE/RECALL ».
- 2. Appuyez sur « Type » et sélectionnez « Waveforms ».
- 3. Appuyez sur « Save to » et sélectionnez « Device ».
- 4. Appuyez sur « Waveform » ou tournez la roue universelle pour sélectionner « No.1 ».
- 5. Appuyez sur le bouton « Recall ».

### Sauvegarder les formes d'onde sur une clé USB.

#### Table 3.48 – Menu de sauvegarde de formes d'onde sur une clé USB

Options	Paramètres	Descriptions
Туре	Waveforms	Menu pour la sauvegarde et le rappel des formes d'onde.
Enregistrer sous (Save to)	File	Sélectionne l'emplacement sur la clé USB.
Save		Sélectionne pour enregistrer sur clé USB.



Figure 3.51- Ecran de sauvegarde de forme d'onde (dans une clé USB)

# Pour sauvegarder des formes d'onde sur une clé USB, suivez les étapes suivantes :

- 1. Entrez un signal sinusoïdal dans la voie 1 puis appuyez sur « AUTO ».
- 2. Appuyez sur « SAVE/RECALL » pour accéder au menu d'affichage « SAVE/RECALL ».
- 3. Appuyez sur « Type » et sélectionnez « Waveforms ».
- 4. Insérez une clé USB sur le port USB hôte avant ou arrière de l'oscilloscope et attendez jusqu'à ce que l'appareil ait initialisé la clé USB (environ cing secondes).
- 5. Appuyez sur « Save to » et sélectionnez « File ».
- 6. Appuyez sur « Save », ainsi vous accédez à l'interface « Save/Recall ».
- Créez un fichier puis appuyez sur « Confirm » (environ cinq secondes et il y aura le message « Save data success » qui s'affichera à l'écran). La donnée de forme d'onde a alors été enregistrée dans la clé USB.

# Pour rappeler des formes d'onde à partir d'une clé USB, suivez les étapes suivantes :

- 1. Appuyez sur « SAVE/RECALL ».
- 2. Appuyez sur « Type » et sélectionnez « waveforms ».
- 3. Insérez une clé USB sur le port USB hôte avant ou arrière de l'oscilloscope et attendez jusqu'à ce que l'appareil ait initialisé la clé USB (environ dix secondes).
- 4. Appuyez sur « Save to » et sélectionnez « File ».
- 5. Appuyez sur « Save », ainsi vous accédez à l'interface « Save/Recall ».
- Choisissez le fichier que vous voulez et appuyez sur « Load » (en cinq secondes, il y aura un message « Recall data success »). Les données de réglages ont été chargées à partir de la clé USB.

### Sauvegarder des images et des captures d'écran

La capture d'écran affichée peut être sauvegardée dans une clé USB, mais les images ne peuvent pas être rappelées. Les images peuvent être ouvertes sur un ordinateur.

Options	Paramètres	Descriptions
Туре	Images (Pictures)	Sauvegarde la capture d'écran.
Save		Sauvegarde la capture d'écran sur une clé USB.

#### Table 3.49 – Menu de stockage d'image



Figure 3.52 – Ecran de sauvegarde d'image

# Pour sauvegarder des images de formes d'onde sur une clé USB, suivez les étapes suivantes :

- 1. Sélectionnez l'image de l'écran que vous souhaitez.
- Appuyez sur « SAVE/RECALL » pour accéder au menu « SAVE/RECALL ».
- 3. Appuyez sur « Type et sélectionnez « Picture ».
- Insérez une clé USB sur le port USB hôte de l'oscilloscope et attendez jusqu'à ce que l'appareil ait initialisé la clé USB (environ cinq secondes).
- 5. Appuyez « Print key » pour sauvegarder l'image de la capture d'écran dans la clé USB.
- 6. Sinon, vous pouvez personnaliser le nom du fichier à enregistrer en appuyant sur « Save ».
- 7. Le menu « SAVE ALL » va s'afficher. Sélectionnez « New file » et saisissez le nom du fichier.
- Appuyez sur « Confirm » (en cinq secondes, le message « Save data success » s'affichera à l'écran). L'image de la capture d'écran a alors été sauvegardée sur la clé USB.

### Sauvegarde et rappel CSV

Options	Paramètres	Descriptions
Туре	CSV	Menu pour le stockage des fichiers au format .CSV sur clé USB.
Profondeur de données (Data Depth)	Affiché (Displayed) Maximum	Réglage pour la sauvegarde dans un fichier .CSV les données de forme d'onde. Réglage pour la sauvegarde dans un fichier .CSV d'un maximum de données de formes d'onde.
Para Save	On Off	Cette option est utilisée ou non pour inclure des paramètres de formes d'onde dans le fichier .CSV.
Save		Accès à l'interface SAVE ALL.

#### Table 3.50 – Menu de stockage CSV



Figure 3.53 – Ecran « enregistrer sous »

# Pour sauvegarder les fichiers CSV sur une clé USB, suivez les étapes suivantes :

- 1. Appuyez sur « SAVE/RECALL » pour accéder au menu « SAVE/RECALL ».
- 2. Appuyez sur « Type » et sélectionnez « CSV ».
- Insérez une clé USB sur un port USB hôte de l'oscilloscope et attendez qu'il ait initialisé la clé USB (environ cinq secondes).
- 4. Appuyez sur « Data depth » et sélectionnez « Displayed » ou « Maximum ».
- 5. Appuyez sur « Para save » pour sélectionner « On » ou « Off ».
- 6. Appuyez sur « Save », puis vous accéderez à l'interface « Save/Recall ».
- Créer un nom de fichier, puis appuyez sur « Confirm » (en cinq secondes, le message « Save data success » s'affichera sur l'écran) Le fichier CSV a alors été sauvegardé sur la clé USB.

**NOTE:** Le nombre maximum de points de données d'une forme d'onde pouvant être enregistré en tant que fichier .CSV dans une clé USB est d'environ 40 000 points (en fonction du paramétrage de la base de temps) lorsque la profondeur de données est paramétrée au maximum. Ce nombre dépend de la configuration de la base de temps, des voies activées et de la profondeur de données réglée sur « display » ou « maximum ». Vous trouverez ci-dessous un tableau pour le maximum de points de données disponibles pour chaque base de temps lorsque la profondeur de données est réglée au maximum.

	Nombre de points sauvegardés sous fichier CSV (profondeur de donnée réglée au maximum)	
Base de temps	1 voie	2 voies
(Time Base)	(Single Channel)	(Dual Channel)
2.5 ns – 50 ns	40 k	20 k
100 ns – 50 ms	20 k	20 k

## 3.16 Utilitaire système

Appuyez sur le bouton « UTILITY » (se trouvant sur le panneau avant de l'appareil) pour accéder aux options utilitaires.

Options	Paramètres	Descriptions
System Status		Affiche des informations sur les paramètres de l'oscilloscope.
Son (Sound)	${\otimes}$	Active les sons Désactive les sons
Compteur (Counter)	On Off	Active le compteur de fréquence. Désactive le compteur de fréquence.
Langue (Language)	简体中文 繁體中文 English Français Deutsch Русский Español Português 日本語 한국어 Italiana	Chinois simplifié Chinois traditionnel Anglais Arabe Français Allemand Russe Espagnol Portugais Japonais Coréen Italien
Page suivante (Next Page)	Page 1/4	Accès à la seconde page.

Table 3.51 – Menu 1 du système Utility



Figure 3.54 – Ecran 1 du menu Utility

Options	Paramètres	Descriptions
Do Solf Col		Lancement de la procédure
Do Sell Cal		d'auto-calibration.
	Test d'écran (Screen	Lancement du test de l'écran.
	Test)	
	Test de clavier	Lancement du test du clavier
Do Self Test	numérique	numérique.
	(Keyboard Test)	
	Test d'éclairage (LED	Lancement du test
	Test)	d'éclairage.
		Paramètre le port USB sur
Back LISB	LISPINC	l'interface USBTMC. Utiliser
Dack USD	OSDINC	cette option pour le pilotage à
		distance via le SCPI.
Page suivante (Next Page)	Page 2/4	Accès à la troisième page.

Table 3.52 –	Menu 2 du	système	Utility
--------------	-----------	---------	---------



Figure 3.55 – Ecran 2 du menu Utility

Options	Paramètres	Descriptions
Mise à jour du		
logiciel		Met à jour le logiciel de l'oscilloscope
(Update		en utilisant une clé USB.
firmware)		
Pass/Fail		Appuyez sur ce bouton pour accéder au
F d 55/ F d 11		menu « Pass/Fail ».
Enrogistroment		Appuyez sur ce bouton pour accéder au
(Record)		menu d'enregistrement de la forme
(Record)		d'onde.
Page suivante	Page 2/4	Accès à la d ^{ème} page
(Next Page)	Page 5/4	Acces a la 4 page.

#### Table 3.53 – Menu 3 du système Utility



Figure 3.56 – Ecran 3 du menu Utility

Table	3.54	– Menı	ı 4 du	système	Utility	

.

. .

Options	Paramètres	Descriptions
Ecran de veille (Screen-saver)	1min, 2min, 5min,10min 15min, 30min, 1hour, 2hour, 5hour ,Off	Configuration du temps de mise en veille de l'écran.
Enregistreur (Recorder)		Accès à la fonction d'enregistrement (uniquement pour le mode scan)
Page suivante (Next Page)		Accès à la 1ère page.



Figure 3.57 – Ecran 4 du menu Utility

## Etat du système

Appuyez sur « System Status » du menu Utility pour voir la configuration du hardware et du logiciel de l'oscilloscope.

Startup Times	
01	
Software Version	
5.01.02.22	
Hardware Version	
11-62-3.5	
Product Type	
2190D	
Serial No.	
BK00000000000	
press 'SINGLE' key to	exit

Figure 3.58 – Ecran d'état du système

Options	Descriptions
Temps de démarrage (Startup	Indique le nombre de temps de
Times)	démarrage.
Software version	Indique la version du logiciel.
Hardware Version	Indique la version du hardware.
Product type	Indique le modèle du produit.
Serial No.	Indique le numéro de série du produit.

#### Table 3.55 – Informations d'état du système

### Langue

Les éléments du menu peuvent être affichés en 12 langues différentes selon la nationalité de l'utilisateur.

Appuyez sur « UTILITY » puis sélectionnez « Language ».

<b>B</b> &	K	Rea	dy			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	*****	<u></u>		- 6	믕	UTILITY
								÷					
													System Status
	t i							-					
	<b>.</b>												Sound
								-					<€×
	<u>-</u>												
_	<b>.</b>												Counter
				-		-		-					On
	[										简体中文	•	Language
	<b>.</b>										整體中文	. J	English
	E							-			English		Next Deve
	- · · ·										Linghon		Next Page
	E									e	<10Hz		Page 1/4
	CH1==	1.000				 		M 50	0µs M P	os:0.0	CH1 Øvs	70.0	ØmV

Figure 3.59 – Ecran de sélection de la langue

## **Auto-Calibration**

La procédure d'auto-calibration permet d'obtenir des résultats de mesures optimaux. Vous pouvez lancer cette procédure à n'importe quel moment. Si la température de fonctionnement augmente de plus de 5°C ou si l'instrument fonctionne depuis plus de 30 minutes, le lancement de l'autocalibration de l'appareil est alors recommandé. Lorsque vous lancez l'auto-calibration, vous devez déconnecter toutes les sondes et les câbles et vous assurez que l'oscilloscope n'est pas en mode « Single-shot ». Ensuite appuyez sur « Utility » pour choisissez l'option « Do self Cal » afin de voir le menu d'auto-calibration et exécuter le programme d'auto-calibration en fonction des informations affichées à l'écran.

Disconnect Everything from All Inputs									

Figure 3.60 – Ecran d'auto-calibration

### Test automatique

Appuyez sur « UTILITY » et sélectionnez « Do self test ».

Option	Description
Test d'écran (Screen Test)	Lancement du test de l'écran.
Keyboard Test	Lancement du test du clavier numérique.
LED Test	Lancement du test de l'éclairage.

### <u>Test de l'écran</u>

Sélectionnez « Screen test » pour accéder à l'interface de test de l'écran. Les messages « appuyez sur « single » pour continuer, appuyez sur « RUN/STOP » pour quitter » s'affichent. Appuyez sur « Single » pour accéder au test de l'écran couleur ou appuyez sur « Run/Stop » pour en sortir.



Figure 3.61 – Ecran test de démarrage de l'écran

### Test du clavier numérique

Sélectionnez « keyboard test » pour accéder à l'interface de test du clavier. Les formes de l'écran de démarrage représentent les touches du panneau avant. Les formes avec deux flèches derrières elles représentent les boutons du panneau avant. Les carrés représentent les différentes commandes d'échelle. Testez toutes les commandes et les roues codeuses afin de vérifier que les touches disposant d'un rétro-éclairage fonctionnent correctement.

**NOTE:** Si vous faites le test pour la 1^{ère} fois, l'écran affichera toutes les formes activées en blanc.

En appuyant sur n'importe quel bouton du panneau avant, cela affichera la forme correspondante à l'écran et sera verte si tout fonctionne normalement.

Pour quitter le test quand vous le souhaitez, appuyez sur la touche « RUN/STOP » trois fois pour quitter comme indiqué en bas de l'écran.



Figure 3.62 – Ecran de test de touches

### <u>Test des LED</u>

Sélectionnez « LED Test » pour tester le rétro-éclairage LED de certains boutons du panneau avant. L'écran affichera des formes de touche qui représenteront tous les boutons du panneau avant. Suivez les instructions ci-dessous : « Appuyez sur « SINGLE » pour continuer, appuyez sur « RUN/STOP » pour quitter. A chaque fois que la touche « SINGLE » est enfoncée, une forme de touche devient verte à l'écran, ce qui indique que la touche correspondante ou l'indicateur doivent être retirés. Appuyez sur « SINGLE » à nouveau pour tester un autre rétro-éclairage d'une touche. Une fois que toutes les touches rétroéclairées sont testées, elles s'allument simultanément. En appuyant sur « SINGLE » à nouveau, tout se redémarrera. Pour quitter le test, appuyez sur « RUN/STOP ».



Figure 3.63 – Ecran de test LED

## Mise à jour du firmware

Le firmware de l'oscilloscope peut être directement mis à jour via une clé USB. Ce processus prend 2 minutes environ. Pour mettre à jour, suivez les étapes suivantes :

- 1. Téléchargez et sauvegardez le fichier du firmware sur une clé USB.
- 2. Insérez une clé USB sur l'interface USB hôte du panneau avant de l'oscilloscope.
- 3. Appuyez sur « UTILITY » pour accéder au menu « Utility ».
- Appuyez sur « Next page » pour accéder à la 3^{ème} page du menu « Utility ».
- 5. Appuyez sur « Update Firmware ». Lisez les notes affichées à l'écran avec attention avant de lancer la mise à jour.
- 6. Appuyez sur « SINGLE » pour accéder au menu répertoire de la clé USB.
- Utilisez la roue universelle pour sélectionner le fichier du firmware sur la clé USB, et appuyez sur « Confirm » pour lancer la mise à jour.
- 8. Lorsque la mise à jour est effectuée, redémarrer l'oscilloscope. Le logiciel sera alors mis à jour. L'oscilloscope aura besoin de faire une calibration automatique après la mise à jour. Aller dans la

seconde page du menu Utility et sélectionnez « Do Self Cal » pour lancer la calibration automatique.

Attention: NE PAS éteindre l'oscilloscope lorsqu'il est en train de se mettre à jour. Si vous l'éteignez, le firmware sera corrompu et il est possible que l'instrument ne redémarre pas.

## Pass/Fail

La fonction Pass/Fail vous permet de contrôler les variations de signal et les signaux de sorties Pass ou Fail en contrôlant le signal d'entrée et de savoir s'il se trouve dans le Mask prédéfini.

Options	Paramètres	Descriptions
Activation	On	Active la fonction Pass/Fail.
(Enable)	Off	Désactive la fonction Pass/Fail.
Source	CH1	Sélectionne la voie du signal
	CH2	d'entrée.
Operate	•	Enclenche le test Pass/Fail
		Appuyer sur stop pour arrêter le
		test Pass/Fail.
Msg Display	On	Permet l'affichage des
		informations de temps dans la
		forme d'onde Pass/Fail.
	Off	Supprime l'affichage des
		informations de temps dans la
		forme d'onde Pass/Fail
Page suivante	Page 1/2	Accès à la seconde page du menu
(Next Page)		Pass/Fail.

#### Table 3.57 – Menu 1 de la fonction Pass/Fail



Figure 3.64 – Ecran 1 de la fonction Pass/Fail

Options	Paramètres	Descriptions
		Signal de sortie lorsque la
Sortio	Pass	condition de réussite est
(Output)		détectée.
(Output)	Fail	Signal de sortie lorsque la
		condition d'échec est détectée.
	On	On : Interrompt le test lorsque la
Stop Op Output	UII	sortie est active.
Stop On Output	Off	Off : Continue le test lorsque la
	UII	sortie est active.
Mask Setting		Accès au menu « Mask setting ».
Boturn		Retourner au menu principal de
Return		Pass/Fail.
Novt Dago	Dago 2/2	Retour à la 1 ^{ère} page du menu
Next Page	rage 2/2	Pass/Fail.

#### Table 3.58 – Menu 2 de la fonction Pass/Fail



Figure 3.65 – Ecran 2 de la fonction Pass/Fail

Options	Paramètres	Descriptions			
X Mask		Tournez la roue universelle pour			
		régler la plage de tolérance			
Vdiv		horizontale de la forme d'onde.			
xuiv		<0.04div-4.00div>			
V Mask		Tourner la roue universelle			
		pour régler la plage de tolérance			
. V div		verticale de la forme d'onde.			
yuiv		<0.04div-4.00div>			
Create		Crée un test « mask » en fonction			
Mask		de la tolérance au dessus.			
	Interne				
Location	(Internal)	Sélectionne la position pour stocker			
LOCATION	Externe	les masques crées.			
	(External)				
Page suivante	Dago 1/2	Accès à la seconde page du menu			
(Next Page)	rage 1/2	« Mask setting ».			

#### Table 3.59 – Menu 1 du paramètre Mask



Figure 3.66 – Ecran 1 du menu Mask

Options	Paramètres	Descriptions			
Enregistrer		Stocke les paramètres de masques			
(Save)		crées.			
Charger		Rappel les paramètres de masques			
(Load)		stockés.			
Boturn		Retour au menu principal du			
Return		paramètre de masque.			
Page précédente	Dago 2/2	Retour à la 1 ^{ère} page du menu			
(Last Page)	rage 2/2	« Mask setting ».			

#### Table 3.60 – Mask Settings Menu 2



Figure 3.67 – Ecran 2 du menu Mask

#### Pour lancer le test Pass/Fail, suivez les instructions :

- 1. Appuyez sur « UTILITY » pour accéder au menu « Utility ».
- 2. Appuyez sur « Next Page Page 1/4 ».
- Appuyez sur « Next Page Page 2/4 » pour accéder à la 3^{ème} page du menu « Utility ».
- 4. Appuyez sur « Pass/Fail » pour accéder au menu « Pass/Fail ».
- 5. Appuyez sur « Enable test » et sélectionnez « On ».
- 6. Appuyez sur « Source » pour sélectionner la voie du signal d'entrée.
- Appuyez sur « Next Page Page 1/2 » pour accéder à la 2^{ème} page du menu « Pass/Fail ».
- Appuyez sur « Mask Setting » pour accéder à la 1^{ère} page du menu.
- 9. Appuyez sur « X Mask » ; tournez la roue universelle pour ajuster la tolérance horizontale.
- 10. Appuyez sur « Y Mask » ; tournez la roue universelle pour ajuster la tolérance verticale.
- 11. Appuyez sur « Create Mask » pour créer un masque. Vous pouvez aussi accéder à la page suivante du menu « Mask » pour rappeler un masque enregistré.
- 12. Accédez à la 2^{ème} page du menu « Pass/Fail » et appuyez sur « Output » pour régler l'option de sortie.
Accédez à la 1^{ère} page du menu « Pass/Fail » et appuyez sur « Operate » pour sélectionner « ▶ » afin de lancer le test pass/fail.

### Enregistrement d'une forme d'onde

#### Enregistrement

Appuyez sur Record pour enregistrer la forme d'onde des voies CH1 et CH2 avec une longueur maximum d'enregistrement de 2500 trames. Le temps entre les trames est ajustable. Vous pouvez enregistrer une sortie test Pass/Fail (ceci est particulièrement utile lorsque vous capturer des signaux anormaux sur une longue période) sans avoir à regarder le signal.

Options	Paramètres	Descriptions
		Règle le menu « Record »
	Record	(enregistrement).
Mode	Play Back	Règle le menu Play Back.
Widde	Storage	Règle le menu Storage (stockage).
	Off	Arrête la fonction d'enregistrement de
		signal.
	CH1	Sélectionne la voie de source de
Source	CH2	l'enregistrement
	P/F-OUT	
Interval		Paramètre le temps d'intervalle entre
	•	les trames d'enregistrement.
End Frame	<b>+</b> )	Règle le nombre maximal de trames
Life Hame	V	d'enregistrement.
	•	Appuyez pour lancer l'enregistrement.
Operate	(Record)	
	📕 (Stop)	Appuyez pour arrêter l'enregistrement.

Table 3.61 –	Menu o	d'enregis	trement	ďun	signal
10010 0101		- CIII CBIS	er er rer re		0.D.I.a.



Figure 3.68 – Ecran du menu d'enregistrement (Mode enregistrement)

#### Pour enregistrer des formes d'onde, suivez les étapes suivantes :

- 1. Appuyez sur « UTILITY » pour accéder au menu « Utility ».
- Appuyez sur « Next Page » pour accéder à la 3^{ème} page du menu « Utility ».
- Appuyez sur « Record » pour accéder au menu « Waveform record ».
- 4. Appuyez sur « Mode » et sélectionnez « Record ».
- 5. Appuyez sur « Source » pour sélectionner la voie du signal d'entrée.
- 6. Sélectionnez l'option « Interval » et tournez la roue universelle pour ajuster le temps d'intervalle entre les trames d'enregistrement.
- 7. Sélectionnez « End trame » et tournez la roue universelle pour ajuster la trame d'enregistrement maximale.
- 8. Appuyez sur « » avec l'option « Operate » pour enregistrer la forme d'onde.

#### <u>Play Back</u>

Repasser (play back) les formes d'onde enregistrées en cours ou alors des formes d'ondes qui ont été sauvegardées.

Options	Paramètres	Descriptions
Mode	Play Back	Règle le menu de la fonction Play Back.
Operate	🕨 (Run)	Lance la lecture du Play Back.
Operate	📕 (Stop)	Stoppe la lecture.
Diau Mada	¢-7	Mode de lecture répétée.
Play Would	▶→■	Mode de lecture unique.
Intonyal	4)	Définit le temps d'intervalle entre les
IIItervar	U	trames.
Novt Dago	$P_{2} = 1/2$	Accès à la 2 ^{ème} page du menu Play
Next Fage	Fage 1/2	Back.

Table 3.62 – Menu	1 de la	fonction Play	y back d'un signal
-------------------	---------	---------------	--------------------



Figure 3.69 – Ecran 1 du menu Play Back (Mode d'encodage)

Options	Paramètres	Description
Start Frame	も	Règle la trame de départ.
Curr_Frame	も	Sélectionne la trame actuelle à lire.
End Frame	も	Règle la trame de fin.
Return		Retour au menu principal
		d'enregistrement de signal.
Next Page	Page 2/2	Retour à la 1 ^{ère} page du menu Plack
		back.

#### Table 3.63 – Menu 2 de la fonction Play Back d'un signal



Figure 3.70 – Ecran 2 du menu Play Back (Mode d'encodage)

# Pour démarrer la lecture des formes d'onde étant en cours d'enregistrement, suivez les étapes suivantes :

- 1. Appuyez sur « UTILITY » pour accéder au menu «Utility ».
- 2. Appuyez sur « Mode » et sélectionnez « Play Back ».
- Appuyez sur « Play mode » pour sélectionner « ↔ » ou « → → ».
- 4. Appuyez sur « Interval » pour sélectionner l'intervalle de temps entre les trames de play back.
- 5. Appuyez sur « Next Page Page 1/2 » pour accéder à la seconde page du menu « Play Back Function».

- 6. Sélectionnez l'option « Start Frame », tournez la roue universelle pour ajuster la trame de départ du signal play back.
- Sélectionnez l'option « End Frame », tournez la roue universelle pour ajuster la trame de fin du signal play back.
- Appuyez sur « Next Page Page 2/2 » pour retourner à la 1^{ère} page du menu « Play Back ».
- 9. Appuyez sur « ▶ » sur l'option « Operate » pour repasser les signaux.

### Enregistreur (uniquement en mode scan)

Ce mode permet l'enregistrement sans trou ou perte de données de forme d'onde et peut être activé en SCAN MODE (mode balayage) uniquement (Lire la section : La Roue codeuse de l'axe horizontal). Ce mode est similaire au mode d'enregistreur de forme d'onde (décrit audessus). Cependant, les données enregistrées peuvent être lues uniquement à l'écran. Elles ne peuvent donc pas être récupérées. Le maximum de données enregistrables dépend de la base de temps en mode balayage. Les données enregistrées peuvent être sauvegardées sur une clé USB.

Options	Descriptions
Record	Enregistrement de la forme d'onde de manière continue.
Replay	Relecture de la forme d'onde enregistrée.
Option	Configuration complète de l'enregistreur.
Return	Arrête la fonction d'enregistrement.

Table 3.64 – Menu d'enregistreur de fo	ormes d'onde
----------------------------------------	--------------



Figure 3.71 – Ecran d'enregistrement

Options	Paramètres	Descriptions
Start		Démarrage de l'enregistrement.
Replay		Relecture de la forme d'onde enregistrée.
Conv		Lorsque le mode Store (stockage) est réglé
Сору		sur clé USB, le nom de fichier est affiché.
Store	Memory	Stocke les enregistrements dans la
Modo	USB key	mémoire interne.
woue		Stocke les enregistrements sur une clé USB.
Return		Retour au menu d'enregistrement.

#### Table 3.66 – Menu d'enregistrement de la forme d'onde (mode relecture)

Options	Descriptions
Continue/Pause	Relecture d'enregistrements de formes d'onde.
Restart	Repasser la forme d'onde enregistrée.
Previous	Rappel de l'enregistrement de la forme d'onde.
Next	Lecture rapide en avant la forme d'onde rappelée.
Return	Retour au menu d'enregistrement.



Figure 3.72 – Ecran de relecture

Table 3.67 –	Menu d'o	ntion d'enr	egistrement	de la	forme c	l'onde
10010 3.07	wichu u of	cion a cin	egistientent	uc ia	ionne e	onuc

Options	Paramètres	Descriptions
	Plein écran	Forme d'onde de l'écran sur et le
	(Full Screen)	rappel de la voie.
Viewer	Ecran partagé (Split)	Forme d'onde d'enregistrement sur écran partagé et le rappel de la voie. CH1 est affichée sur la partie supérieure de l'écran, CH2 est affichée sur la partie basse de l'écran.
Record Mode	Roll	L'enregistreur sauvegarde de manière continue la forme d'onde de la voie, la nouvelle forme d'onde recouvre l'ancienne; la nouvelle forme d'onde recouvre l'ancienne.
	Single	L'enregistreur interrompra l'enregistrement de forme lorsque sa mémoire sera pleine.

	By point	Lors d'un rappel, la forme d'onde à l'écran se rafraichit de gauche à droite.
Replay Mode	By frame	Lors d'un rappel, la forme d'onde à l'écran se rafraichit complètement en fonction du temps de capture de chaque trame.
Return		Quitter le menu de paramétrage d'enregistrement.



Figure 3.73 – Ecran d'enregistrement

#### Etapes de l'opération d'enregistrement :

- 1. Appuyez sur UTILITY pour accéder au menu Utility.
- Appuyez sur « Next Page » pour accéder à la 4^{ème} page du menu « Utility ».
- 3. Appuyez sur « Recorder » pour accéder au menu d'enregistrement.
- 4. Appuyez sur « Option » pour régler les options de l'enregistreur.

- 5. Appuyez sur « Record » pour accéder au menu Record puis appuyez sur « Start » pour démarrer l'enregistrement de la forme d'onde.
- Après avoir terminé l'enregistrement de la forme d'onde, appuyer sur « Replay » afin de visualiser la forme d'onde enregistrée.

### Menu d'aide

L'oscilloscope possède une fonction d'aide pour aider les utilisateurs à se servir de leur appareil. Appuyez sur « HELP » pour accéder aux fonctions d'aide et ensuite appuyez sur n'importe quel bouton pour rappeler l'information d'aide correspondante. Tout les sous menus de chaque menu principal disposent leurs propres rubriques d'aide.

**NOTE:** Si vous souhaitez voir les informations d'aide des sous menus de la page suivante, tout d'abord appuyez sur « HELP » pour quitter les statuts d'aides. Ensuite aller sur la page suivante du menu et appuyez sur « HELP » une nouvelle fois pour accéder à la fonction d'aide.

### Mode « enseignement »

Le modèle 2190D met à disposition un mode EDU qui permet aux utilisateurs de désactiver les boutons Auto, Measure et Cursors. Ces boutons règlent automatiquement l'oscilloscope pour afficher un signal et calculer les mesures, contournant ainsi la nécessité de savoir la façon dont les paramètres de l'oscilloscope doivent être réglés. La désactivation de ces caractéristiques peut être utilisée par les enseignants pour enseigner les mesures fondamentales des formes d'onde comme s'il s'agissait d'un oscilloscope analogique.

Pour avoir plus d'indications sur la façon d'accéder au mode EDU, veuillez contacter le distributeur sur le lien suivant http://www.bkprecision.com/contact-us.html.

# 4 Exemples d'application

Cette section présente une série d'exemples d'applications. Ces exemples simples mettent en lumière les caractéristiques de l'oscilloscope et donnent une idée pour résoudre vos propres problèmes de test :

- Mesures simples
- Mesures avec curseurs
- Capture d'un signal unique
- Analyse détaillé du signal
- Déclenchement d'un signal vidéo
- Application de la fonction X-Y
- Analyse d'un signal différentiel à l'aide de fonctions mathématiques.

### 4.1 Mesures simples

Observer un signal inconnu dans un circuit, afficher le signal rapidement et mesurer la fréquence et l'amplitude de crête à crête.

#### • Utilisation des réglages Auto

Pour afficher rapidement un signal, suivez les étapes suivantes :

- 1. Appuyez sur CH1, configurez l'atténuation de la sonde à 10 et réglez le bouton de la sonde sur 10.
- 2. Connectez la sonde de la voie CH1 au signal.
- 3. Appuyez sur AUTO
- L'oscilloscope configure automatiquement les commandes verticales, horizontales, et de déclenchement. Si vous souhaitez optimiser l'affichage de la forme d'onde, vous pouvez configurer ces commandes manuellement.

**NOTE:** L'oscilloscope affiche les mesures automatiques correctes dans la zone de la forme d'onde de l'écran en se basant sur le type de signal détecté.

#### • Prise de mesures automatiques

L'oscilloscope peut effectuer des mesures automatiques de la plupart des signaux affichés. Pour mesurer une fréquence de signal et l'amplitude crête à crête, suivez les étapes suivantes : **Mesure de la fréquence d'un signal** 

- 1. Entrez un signal dans la voie 1.
- 2. Appuyez sur « AUTO ».
- 3. Appuyez sur « MEASURE » pour accéder au menu « Auto Measure ».
- 4. Choisir l'option du haut.
- 5. Appuyez sur « Time » pour accéder au menu « Time Measure ».
- 6. Appuyez sur « Source » afin de choisir une voie de signal d'entrée.
- Appuyez sur « Type » et choisir Freq. L'icône et la mesure correspondants s'afficheront dans la 3ème zone de l'écran

#### Mesure de la fréquence d'un signal

- 1. Appuyez sur « MEASURE » pour afficher le menu « Auto measure ».
- 2. Appuyez sur la deuxième option du haut.
- 3. Appuyez sur « Voltage » pour accéder au menu « Voltage measure ».
- 4. Appuyez sur « Source » et sélectionnez une voie de signal d'entrée.
- Appuyez sur « Type » et sélectionnez « Vpp ». L'icône et la mesure correspondants s'afficheront dans la 3ème zone de l'écran

### 4.2 Mesures avec curseurs

#### • Mesure de fréquence de cadence

Pour mesurer la fréquence sur le front montant d'un signal, suivez les étapes suivantes :

1. Appuyez sur « CURSORS » pour accéder au menu « Cursor ».

- 2. Appuyez sur « Mode » et sélectionnez « Manual ».
- 3. Appuyez sur « Type » et sélectionnez « Time ».
- 4. Appuyez sur « Source » et choisissez « CH1 ».
- 5. Appuyez sur « CurA » et tournez la roue universelle pour placer le curseur A sur une crête de la cadence.
- 6. Appuyez sur « Cur B » et tournez la roue universelle pour placer le curseur B sur la crête la plus proche de la cadence.

Vous pouvez voir le temps delta et la fréquence (la fréquence de cadence mesurée) en haut à gauche de l'écran.



Figure 4.1 – Mesures de curseurs (Temps)

#### • Mesure de l'amplitude

Pour mesurer l'amplitude, suivez les étapes suivantes :

- 1. Appuyez sur « CURSORS » pour accéder au menu « Cursors ».
- 2. Appuyez sur « Mode » et sélectionnez « Manual ».
- 3. Appuyez sur « Type » et sélectionnez « Voltage ».
- 4. Appuyez sur « Source » et choisissez « CH1 ».
- 5. Appuyez sur « CurA » et tournez la roue universelle pour placer le curseur A sur la crête la plus haute de la cadence.

6. Appuyez sur « CurB » et tournez la roue universelle pour placer le curseur B sur la crête la plus basse de la cadence.

Vous pouvez voir les mesures suivantes en haut à gauche de l'écran :

- La tension delta (tension crête à crête)
- La tension du curseur A.
- La tension du curseur B.



Figure 4.2 – Mesures de curseurs (tension)

### 4.3 Capture d'un signal unique

Pour capturer un événement unique, il vous faut collecter quelques informations du signal afin de configurer correctement le niveau de déclenchement et la pente. Si vous ne savez pas quand le signal va apparaître, vous pouvez l'observer avec le mode de déclenchement auto ou normal pour vous assurez que le niveau du déclenchement et de la pente captureront le signal. Les étapes suivantes vous montrent comment utiliser l'oscilloscope pour capturer un événement unique.

- 1. Réglez l'atténuation de la sonde sur 10 et réglez le bouton de la sonde sur 10.
- 2. Réglage du déclenchement :
  - a. Appuyez sur « TRIG MENU » pour voir le menu « Trigger ».
  - b. Dans ce menu, réglez le type de déclenchement sur « Edge », le type de front est « Rising » (montant), la source est « CH1 », le mode de déclenchement est « Single » et le couplage est « DC ».
  - c. Ajustez la base de temps horizontale et l'échelle verticale par rapport au signal attendu.
  - d. Tournez la roue « LEVEL » pour ajuster le niveau de déclenchement.
- 3. Appuyez sur « RUN/STOP » pour lancer la capture.

Si les conditions de déclenchement sont satisfaisantes, la donnée apparaît sur l'écran, représentant les points de données que l'oscilloscope a obtenu avec une seule acquisition. En appuyant sur « RUN/STOP » une nouvelle fois le circuit de déclenchement se recharge et efface l'affichage.

### 4.4 Analyse des détails du signal

Un signal bruyant s'affiche sur l'oscilloscope et vous voulez savoir ce qu'il en est. Vous suspectez que le signal contient beaucoup plus de détails que vous ne pouvez le voir à l'affichage.

- Analyse d'un signal bruyant
   Le signal est bruyant et vous pensez qu'il vous cause des
   problèmes dans votre circuit. Pour une meilleure analyse de ce
   bruit, suivez les étapes suivantes :
  - 1. Appuyez sur « ACQUIRE » pour voir le menu « Acquire ».
  - 2. Appuyez sur « Acquisition » ou tournez la roue universelle et sélectionnez « Peak Detect ».

3. Si nécessaire, appuyez sur « DISPLAY » pour afficher le menu « Display ». Tournez la roue universelle pour ajuster l'intensité de la forme d'onde et la luminosité du graticule afin de voir le bruit de plus près.

La détection de crête met l'accent sur les pics de bruits et sur les glitches de votre signal, et particulièrement lorsque la base de temps est réglée sur un paramètre lent.

#### • Séparer le signal du bruit

Pour réduire le bruit aléatoire dans l'affichage de l'oscilloscope, suivez les étapes suivantes :

- 1. Appuyez sur « ACQUIRE » pour afficher le menu « Acquire ».
- 2. Appuyez sur « Acquisition » ou tournez la roue universelle et sélectionnez « Average ».
- 3. Appuyez sur « Averages » pour voir les effets lorsque l'on fait varier le nombre de moyennes en cours dans l'affichage de forme d'onde.

Le moyennage réduit les bruits aléatoires et rend plus facile la perception des détails du signal.

## 4.5 Déclencher sur un signal vidéo

Observe un circuit vidéo dans une partie d'un appareil médical et utilise le déclenchement vidéo pour obtenir un affichage stable.

- Déclenchement sur champ vidéo Pour déclencher sur champs vidéo, suivez les étapes suivantes :
  - 1. Appuyez sur « TRIGGER MENU » pour accéder au menu « Trigger »
  - 2. Appuyez sur l'option en haut et sélectionnez « Video ».
  - 3. Appuyez sur « source » et sélectionnez « CH1 ».
  - 4. Appuyez sur « Sync » et sélectionnez « Odd Field » ou « Even Field ».
  - 5. Appuyez sur « Standard » et sélectionnez « NTSC ».
  - 6. Tournez la roue horizontale « Time/div » pour voir une trame complète sur l'écran.

7. Tournez la roue verticale « Volts/div » pour vous assurer que le signal vidéo entier est visible sur l'écran.

#### • Déclenchement sur lignes vidéo

Pour déclencher sur lignes vidéo, suivez les étapes suivantes :

- 1. Appuyez sur « TRIGGER MENU » pour accéder au menu de déclenchement.
- 2. Appuyez sur « option » et sélectionnez « Video ».
- Appuyez sur « Sync » et sélectionnez « Line Num » puis tournez la roue universelle pour paramétrer un numéro de ligne spécifique.
- 4. Appuyez sur « Standard » et sélectionnez « NTSC ».
- 5. Tournez la roue « Time/div » pour voir une ligne vidéo complète sur l'écran.
- 6. Tournez le bouton « Volts/div » pour vous assurez que le signal vidéo entier est visible sur l'écran.

## 4.6 Application de la fonction X-Y

- Observation des changements d'impédance dans un réseau Connectez l'oscilloscope pour contrôler l'entrée et la sortie du circuit. Pour voir l'entrée et la sortie du circuit sur un affichage XY, suivez les étapes suivantes :
  - 1. Appuyez sur le bouton du menu « CH 1 » et réglez l'atténuation de la sonde sur 10.
  - 2. Appuyez sur le bouton du menu « CH 2 » et réglez l'atténuation de la sonde sur 10.
  - 3. Paramétrez le bouton de la sonde sur 10.
  - 4. Connectez la sonde de la voie 1 sur l'entrée du réseau puis la sonde de la voie 2 sur la sortie.
  - 5. Appuyez sur « AUTO ».
  - Tournez les boutons « Volts/div » pour afficher approximativement les mêmes signaux d'amplitude sur chaque voie.
  - 7. Appuyez sur « DISPLAY ».

- 8. Appuyez sur le bouton de l'option « Format » et sélectionnez XY.
- L'oscilloscope affiche alors un modèle Lissajou représentant les caractéristiques d'entrée et de sortie du circuit.
- 10. Tournez le bouton « Volts/div » et les boutons verticaux pour optimiser l'affichage.
- 11. Appuyez sur « Persist » et sélectionnez « Infinite ».
- 12. Appuyez sur « Intensity » ou sur « Brightness » et tournez la roue universelle pour ajuster le contraste de l'écran.

Appliquez la méthode d'Ellipse pour observer la différence de phase entre les 2 voies.



Figure 4.3 – Signaux déphasés (45 degrés)



Figure 4.4 – Signaux déphasés en mode XY (45 degrés)

Sin  $\theta$ =A/B ou C/D où  $\theta$ =changement de phase (en degrés) entre les 2 signaux de la formule indiquée ci-dessus, vous pouvez obtenir :

 $\theta$ =±arcsinus (A/B) or ±arcsinus (C/D)

Si l'axe principal de l'ellipse est sur les quadrants II et IV,  $\theta$  doit être sur la plage de (0- $\pi/2$ ) ou (3 $\pi/2$ -2 $\pi$ ). Si l'axe principal est sur les quadrants I et III,  $\theta$  doit être sur la plage de ( $\pi/2$ - $\pi$ ) ou ( $\pi$ -3 $\pi/2$ ).

# 4.7 Analyse d'un signal de communication différentiel

Vous avez des problèmes intermittents avec un lien de communication de données en série et vous pensez avoir une faible qualité de signal. Paramétrez l'oscilloscope pour voir un instantané d'un flux de données de série. Par conséquent, vous pouvez vérifier les niveaux du signal et le temps de transmission. Comme il s'agit d'un signal différentiel, vous utilisez les fonctions mathématiques de l'oscilloscope afin d'obtenir une meilleure représentation de la forme d'onde.

Pour activer les signaux différentiels connectés aux voies 1 et 2, suivre les étapes suivantes :

- 1. Appuyez sur « CH 1 » et réglez l'atténuation de la sonde sur 10.
- 2. Appuyez sur « CH 2 » et réglez l'atténuation de la sonde sur 10.
- 3. Réglez les boutons sur 10 sur les sondes.
- 4. Appuyez sur « AUTO ».
- 5. Appuyez sur « MATH » pour accéder au menu Math.
- 6. Appuyez sur « Operation » et sélectionnez « ».
- Appuyez sur « CH1– CH2 » pour afficher une nouvelle forme d'onde qui est la différence entre les formes d'ondes affichées.
- 8. Vous pouvez ajuster l'échelle verticale et la position de la forme d'onde Math. Pour se faire, suivez les étapes suivantes :
  - i. Faire disparaître les voies 1 et 2 de l'affichage.
  - Tournez les boutons Volts/Div et la position verticale de CH1 et de CH2 pour ajuster l'échelle verticale et la position.

**NOTE:** Avant tout, assurez vous de compenser les 2 sondes. Les différences de compensation de sonde apparaissent comme des erreurs sur le signal différentiel.

## 5 Contrôle à distance

L'oscilloscope numérique 2190D peut être contrôlé à distance par un logiciel d'ordinateur ou par un programme utilisateur.

Le 2190D va avec le logiciel d'application EasyScopeX, qui met à disposition la plupart des contrôles qui émulent le panneau avant de l'oscilloscope. Le port USB du panneau arrière de l'appareil sert à

connecter un ordinateur pour permettre un pilotage à distance avec le logiciel. Le logiciel EasyScopeX est gratuit et peut être téléchargé à partir du site : <u>www.bkprecision.com</u>.

Les utilisateurs peuvent aussi contrôler l'oscilloscope en le programmant avec les commandes SCPI standards (Standard Commands for Programmable Instruments). Les commandes de pilotage à distance sont accessibles via l'interface USB ou RS232 de l'appareil. Vous pouvez vous référez au manuel de programmation qui peut être téléchargé sur www.bkprecision.com.

# 6 Messages d'erreur et résolution de problèmes

### 6.1 Messages d'erreur

- **Trig level at limit!** : Le niveau de déclenchement a atteint sa limite lorsque vous tournez la roue.
- Horizon position at limit! : L'axe horizontal a atteint sa limite lorsque vous tournez la roue horizontale.
- Volts/Div at limit! : La tension verticale a déjà atteint la valeur Min 2mV/div ou la valeur Max 5V/div.
- Volts position at limit! : Le système affiche ce message lorsque l'axe vertical a atteint sa limite.
- Sec/Div at limit! : « Time/div » est sur la plage maximale lorsque vous tournez le bouton de l'échelle horizontale.
- Holdoff time at limit! : Le temps le paramètre de temps holdoff a atteint la valeur max ou min.
- Function isn't useable! : Dans plusieurs modes spéciaux, certaines fonctions peuvent ne pas fonctionner.
- **No signal!** : Le système affiche ce message lorsque le signal ne correspond pas à la condition de configuration automatique lors de l'utilisation de cette fonction
- Adjust at limit! : La largeur d'impulsion a atteint le minimum de 20.0 ns ou le maximum 10.0s.
- Location Empty! : Si vous n'avez pas sauvegardé de formes d'onde ou de paramétrages dans un emplacement spécifique, l'écran affichera alors ce message lorsque vous appuierez sur « Recall » à cet endroit.
- USB Flash Drive Plug In! : Ce message s'affiche lorsque vous insérez une clé USB sur le port USB hôte.
- USB Flash Drive Pull Out! : Ce message apparaît lorsque vous retirez la clé USB du port USB hôte.
- Store Data Success! : Enregistrement effectué de données de configuration, de données de forme d'onde ou d'images dans la mémoire interne de l'oscilloscope ou de la clé USB.

- **Read Data Success!** : La lecture de donnée de configuration ou de données de formes d'onde provenant de la mémoire interne de l'oscilloscope ou de la clé USB s'est déroulée avec succès.
- USB Flash Drive isn't connected! : Lorsque l'option « Save to » est réglée sur « File » ou que « Print key » est réglée sur « Save picture » dans le menu « Save/Recall », appuyez sur « Save » ou sur « Time/div » avant d'insérer la clé USB sur le port USB hôte. Si vous ne le faîtes pas, cela apparaîtra à l'écran.
- **Record Wave Success!** : Ce message s'affiche lorsque vous avec fini d'enregistrer les formes d'onde.

## 6.2 Résolution de problèmes

- 1. Après démarrage de l'oscilloscope, l'écran reste noir. Veuillez faire les manipulations suivantes :
  - 1. Vérifiez la connexion du câble d'alimentation.
  - Vérifiez le bouton d'entrée principal arrière situé au dessus du réceptacle d'entrée. Assurez-vous qu'il soit allumé.
  - 3. Après avoir suivi les étapes ci-dessus, redémarrez l'oscilloscope.
- 2. S'il n'y a pas de signal sur l'écran après avoir testé l'appareil, suivez les instructions suivantes :
  - 1. Vérifiez que la sonde soit connectée au câble du signal.
  - 2. Vérifiez que le câble du signal soit connecté avec un connecteur BNC.
  - Vérifiez que la sonde soit connectée au DUT (appareil testé).
  - 4. Vérifiez que le DUT testé produise un signal.
  - 5. Essayez de brancher la sonde au DUT pour un nouveau signal.
- 3. Si la valeur de la tension testée est 10 fois plus élevée ou plus basse que celle en cours, suivez les instructions suivantes :

Vérifiez que le rapport d'atténuation corresponde bien à celui de la sonde.

- 4. Si l'affichage de la forme d'onde est instable, suivez les instructions suivantes :
  - Vérifiez le signal source dans l'interface de déclenchement pour savoir s'il correspond à la voie du signal.
  - Vérifiez le mode de déclenchement : un signal normal doit utiliser le mode en pente « Edge ». Le signal vidéo doit utiliser le mode « Video ». L'affichage du signal se stabilisera uniquement lorsque le mode approprié sera utilisé.
  - 3. Essayez de changer le couplage à un affichage « HF Reject » ou « LF Reject » de manière à ce que le bruit de fréquence Haute/Basse soit filtré.

#### 5. Lorsque vous appuyez sur RUN/STOP, l'affichage n'apparait pas.

Vérifiez le mode de déclenchement dans l'interface correspondante pour déterminer s'il est en position normal ou single, et vérifiez le niveau de déclenchement pour savoir si oui ou non il se trouve il dépasse les limites de l'onde. Si c'est le cas, veuillez positionner le niveau de déclenchement au milieu ou régler le mode de déclenchement en position Auto. Vous pouvez aussi choisir Auto pour un réglage automatique.

 Après que l'Acquisition ait été réglée en position « Moyennes » ou que le temps de persistance de l'affichage ait été fortement augmenté, la forme d'onde se rafraichit lentement.

Ceci est la condition normale pour ces réglages.

#### 7. Le signal est affiché en tant que forme d'onde ladder-like

- Ce phénomène est normal. Il se peut que la base de temps soit trop lente. Tourner la roue de l'axe horizontal pour améliorer la résolution horizontale et donc la qualité de l'affichage.
- Il se peut que le type d'affichage soit réglé sur Vectors. Vous pouvez le placer sur mode Dots pour améliorer la qualité de l'affichage.

# 7 Spécifications

Toutes les caractéristiques s'appliquent aux mesures effectuées avec sonde de rapport 1/10. Afin de vous assurer que l'oscilloscope satisfait toutes les spécifications, il doit avant tout remplir les conditions suivantes :

- L'oscilloscope doit avoir fonctionné sans interruption pendant au moins 30 minutes sous une température de fonctionnement spécifique.
- Vous devez effectuer l'opération « Do self cal », accessible via le menu Utility, si la température de fonctionnement augmente de plus de 5°C.
- L'oscilloscope doit être dans l'intervalle de calibration de facteur.

	2190D	
Entrées		
Couplage d'entrée	AC, DC, GND	
Impédance d'entrée	1 MΩ ± 2%    16 pF ± 3 pF,	
Tensions d'entrée	400 V (DC+AC PK-PK, entrée d'impédance	
maximale	1 MΩ, X10), CAT I	
Isolation entre voies		
(les 2 voies pour un	>100:1 at 100 MHz	
même réglage V/div)		
Atténuation de la sonde	1X, 10X	
Facteurs d'atténuation de	1X, 5X, 10X, 50X, 100X, 500X, 1000X	
la sonde		
Système vertical		
Sensibilité verticale	2 mV/div -10 V/div (ordre 1-2-5)	
Gamme offset de tension	2mV –200mV: ±1.6V 206mV - 10V:	
de la voie	±40V	
Résolution verticale	8 bit	
Voies	2	
Passe bande analogique	100 MHz	
(-3 dB)		

Toutes les spécifications sont garanties sauf celles appelées « typique ».

Limite de fréquence basse (AC -3 dB)	≤10 Hz (sur entrée BNC)	
Précision de gain DC	De 5 mV/div à 10 V/div dans des gammes de gains calibrés : <±3.0% 2 mV/div dans des gammes de gains variables: <±4.0%	
Précision de mesure DC: Paramètre des gains ≤ 100 mV/div	± [3% × ( lecture + offset ) + 1% ×  offset  + 0.2 div + 2 mV]	
Précision de mesure DC: Paramètre des gains > 100 mV/div	± [3% × ( lecture + offset )+ 1% ×  offset  + 0.2 div + 100 mV]	
Temps de montée	<3.5 ns	
Overshoot, typique (en utilisant une impulsion de 500 ps)	<10% avec entrée de sonde ou BNC et charge de passage 50 ohms.	
Opération mathématique	+, –, ×, /, FFT	
FFT	Mode fenêtre: Hanning, Hamming, Blackman, Rectangulaire Points d'échantillonnage: 1024	
Passe bande limitée	20 MHz ± 40% (Note: passe bande limitée en dessous 20 MHz lors de l'utilisation de la sonde sur 1)	
Système horizontal		
Taux d'échantillonnage en temps réel	1 GSa/s (les voies étant entrelacées) 500 MSa/s (par voie)	
Taux d'échantillonnage Equivalent Max	50 GSa/s	
Modes d'affichage de mesure	MAIN, WINDOW, WINDOW ZOOM, ROLL, X-Y	
Précision de la base de temps	±50 ppm mesurés sur un intervalle 1 ms	
Commo do scor	2.5 ns/div – 50 s/div	
horizontal	Mode scan: 100 ms/div – 50 s/div (séquence 1-2.5-5)	
Longueur de mémoire	40 000 points lorsque la base de temps	

maximale	va de 2.5 ns à 50ns, 20 000 points de 100		
	ns à une base de temps de 50 ms et		
	opération de voie double. Plus de détails		
	dans les sections « Sauvegarde » et		
	« Rappel CSV ».		
Système de déclenchement			
Turses de déclaraberrant	Front, largeur d'impulsion, signaux vidéo,		
Types de déclenchement	pente, alterné		
Source de déclenchement	CH1, CH2, EXT, EXT/5, AC Line		
Modes de	Automatique, Normal, unique		
déclenchement			
Couplage de	AC DC LE reject HE reject		
déclenchement	AC, DC, LF TEJECI, HF TEJECI		
	CH1,CH2: ± 6 divisions depuis le centre		
Gamme de niveau de	de l'écran		
déclenchement	EXT: ±1.2 V		
	EXT/5: ±6 V		
Déplesement du	Pré-déclenchement: Profondeur de		
Deplacement du	mémoire /(2*échantillonnage),		
decienchement	Délai de déclenchement: 271.04 div		
Précision du niveau de			
déclenchement (typique)	Interne: $\pm (0.2 \text{ dV} \times \text{V/dV})(\text{ dans } \pm 4$		
applicable pour le signal	divisions depuis le centre de l'ecran)		
du temps de montée et	EXI: ±(6% du parametrage + 40 mV)		
de descente ≥20 ns	EXT/5: ±(6% du paramétrage+ 200 mV)		
	Pour gammes de gains calibrés		
	1 Divisions: DC–10 MHz		
	1.5 Divisions: 10 MHz – max. passe		
	bande		
Sensibilité de	EXT: 200 mVpp DC–10 MHz,		
déclenchement	300 mVpp 10 MHz – max. passe		
	bande		
	EXT/5: 1 Vpp DC–10 MHz,		
	1.5 Vpp 10 MHz – max. passe bande		
Déclenchement sur	Modes de déclenchement : (>,<, =) +		
largeur d'impulsion	largeur d'impulsion, (>, <, =) –largeur		

	d'impulsion	
	Plage de largeur d'impulsion : 20 ns – 10	
	S	
Déclenchement vidéo	Format de signal: PAL/SECAM, NTSC	
	(>,<, =) pente positive, (>,<, =) pente	
Déclenchement sur pente	négative	
	temps: 20 ns – 10 s	
	Type de déclenchement CH1: Front,	
Déclanchamant altarná	impulsion, vidéo, pente	
Decienchement alterne	Type de déclenchement CH2 : front,	
	impulsion, vidéo, pente	
Mode X-Y		
Entrée X-Pole / entrée Y- Pole	Voie 1 (CH1) / Voie 2 (CH2)	
Erreur de phase	± 3 degrés	
Compteur de fréquence ha	rdware	
Résolution de lecture	1 Hz	
Gamme	Couple DC, passe bande de 10 Hz à MAX	
	Tous les signaux de déclenchement	
Types de signaux	(excepté le déclenchement sur largeur	
	d'impulsion, et sur signaux vidéo)	
Panneau de contrôle		
Configuration	Ajustement automatique du système	
automatique	vertical, norizontal et de la position de	
Enregistrement/Rannel	20 paramètres et 10 formes d'onde	
Linegistrement/happer	canturées sur et à nartir de la mémoire	
	interne ou d'une clé USB	
Système de mesure		
	Vpp, Vmax, Vmin, Vamp, Vtop, Vbase,	
	Vavg, Mean, Crms, Vrms, ROVShoot,	
Mesures	FOVShoot, RPREShoot, FPREShoot, temps	
(32 Types)	de montée, temps de descente, Fréq,	
	Période, +Wid, –Wid, +Dut, –Dut, BWid,	

LFFMesure de curseurMode manuel, track, automatiqueSpécifications généralesAffichageAffichage LCD TFT couleur 7.0"Résolution480 x 234 pixelsCouleur d'affichage24 bitContraste d'affichage150:1Intensité de150:1		Phase, FRR, FRF, FFR, FFF, LRR, LRF, LFR,		
Mesure de curseurMode manuel, track, automatiqueSpécifications généralesAffichageAffichage LCD TFT couleur 7.0"Résolution480 x 234 pixelsCouleur d'affichage24 bitContraste d'affichage150:1Intensité de150:1		LFF		
Mesure de curseurMode manuel, track, automatiqueSpécifications généralesAffichageAffichage LCD TFT couleur 7.0"Résolution480 x 234 pixelsCouleur d'affichage24 bitContraste d'affichage150:1Intensité de150:1				
Mesure de curseur    Mode manuel, track, automatique      Spécifications générales    Affichage      Affichage    Affichage LCD TFT couleur 7.0"      Résolution    480 x 234 pixels      Couleur d'affichage    24 bit      Contraste d'affichage    150:1      Intensité de    Intensité de				
Mesure de curseurMode manuel, track, automatiqueSpécifications généralesAffichageAffichage LCD TFT couleur 7.0"Résolution480 x 234 pixelsCouleur d'affichage24 bitContraste d'affichage150:1Intensité de150:1				
Spécifications généralesAffichageAffichage LCD TFT couleur 7.0"Résolution480 x 234 pixelsCouleur d'affichage24 bitContraste d'affichage150:1(Typique)Intensité de	Mesure de curseur	Mode manuel, track, automatique		
AffichageAffichage LCD TFT couleur 7.0"Résolution480 x 234 pixelsCouleur d'affichage24 bitContraste d'affichage150:1(Typique)Intensité de	Spécifications générales			
Résolution480 x 234 pixelsCouleur d'affichage24 bitContraste d'affichage (Typique)150:1	Affichage	Affichage LCD TFT couleur 7.0"		
Couleur d'affichage  24 bit    Contraste d'affichage  150:1    (Typique)  Intensité de	Résolution	480 x 234 pixels		
Contraste d'affichage (Typique) 150:1	Couleur d'affichage	24 bit		
(Typique)	Contraste d'affichage	450.4		
Intensité de	(Typique)	150.1		
	Intensité de			
rétroéclairage 300 nit	rétroéclairage	300 nit		
(Typique)	(Typique)			
Plage d'affichage de	Plage d'affichage de	8 x 18 div		
l'onde	l'onde			
Mode d'affichage de Points, vecteurs	Mode d'affichage de	Points vecteurs		
l'onde	l'onde			
Interpolation de forme Sin(x)/x. Linéaire	Interpolation de forme	Sin(x)/x. Linéaire		
d'onde d'onde	d'onde			
Français, chinois simplifié, chinois		Français, chinois simplifié, chinois		
Langues traditionnel, anglais, arabe, allemand,	Langues	traditionnel, anglais, arabe, allemand,		
russe, portugais, espagnol, japonais,		russe, portugais, espagnol, japonais,		
Coreen, Italien		coreen, Italien		
Températures	Températures	En fonctionnement: $10^{\circ}$ C a + $40^{\circ}$ C		
AT difet: -20 C d + 60 C	Pofroidiccomont	Al affet: -20 C a + 60 C		
En fonctionnomont: 85% BH 40 °C 24	Renoluissement	En fonctionnoment: 85% BH 40.°C 24		
El Tolictionnement. 65% KH, 40°C, 24	11	bouros		
A l'arrât: 85% PH 65 % 24 hourse	Humate	A l'arrêt: 85% BH 65 °C 34 hourse		
En fonctionnomont: 2000m		En fonctionnoment: 2000m		
Altitude Al'arrêt: 15.266m	Altitude	Δ l'arrêt: 15 266m		
100-240 VAC CAT II sélection		100-240 VAC CAT IL sélection		
Entrée AC (secteur)	Entrée AC (secteur)	automatique		
	Fréquence	45 Hz à 440 Hz		
Puissance 50 VA Max	Puissance	50 VA Max		

	Longueur	323.1 mm
Dimension	Largeur	135.6 mm
	Hauteur	157 mm
Poids	2.5 kg	

# 8 Ajustage périodique

Nous recommandons de faire un ajustage une fois par an.