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Chapter 1

Sequential Logic Design Trainer, Model DL-020
The Sequential Logic Design Trainer that you have contains all of the necessary tools for you to 

easily implement many combinational and sequential digital logic circuits. Combinational and se-

quential logic circuits are the two major types of circuits found inside microprocessors. The layout of 

the trainer is shown in Figure 1.

Figure 1: Sequential Logic Design Trainer layout. All of the logic gates and I / O’s are pre-mounted 
with wire connection points.

The following is a list of all of the components on the trainer:

>> Twelve NOT gates

>> Eight 4-input AND gates

>> Twelve 2-input AND gates

>> Eight 4-input OR gates

>> Eight 2-input OR gates
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>> Twelve 2-input XOR gates

>> Eight 2-input NAND gates

>> Four D flip-flops with enable and asynchronous clear

>> Four 4-to-1 multiplexers

>> Selectable 1 Hz/20 Hz clock

>> Eight multi-color LEDs

>> Two 7-segment LED displays

>> Eight toggle switches

>> Three push button switches

>> VCC and GND connection points

>> General bread board area with 270 tie points

>> Hook-up wires of various lengths

The eight LEDs and the LED segments of the 7-segment displays are active high, which means that 

a logic 1 will turn the light on, and a logic 0 will turn the light off. The three push buttons, PB0, PB1 

and PB2, are also active high, so pressing the button will produce a logic 1 signal. All of the eight 

switches, SW0 to SW7, are configured so that when the switch is in the up position the output is a 

logic 1, and when the switch is in the down position the output is a logic 0.

You can also connect a wire to one of the VCC connection points to directly get a logic 1 signal. 

Similarly, connecting a wire to one of the GND connection points will get a logic 0 signal.

In addition to the standard logic gates and I/O’s, the trainer also provides four D flip-flops with 

enable and asynchronous clear for building larger sequential circuits. Sequential circuits in a com-

puter system also require precise timing, and this is accomplished by using a clock signal which is a 

square-wave of a fixed frequency. The trainer has a square wave clock generator for two different 

frequencies, 1 Hz and 20 Hz, selectable using a toggle switch. The use of the flip-flops and the clock 

will be explained in detail in later sections of this manual. Finally, the trainer also includes four 4-to-1 

multiplexers for building larger circuits.

All of the logic gates, flip-flops, multiplexers and I/O’s are pre-mounted for easy wiring of a circuit. 

All component inputs are connected to one wire connection point, and all component outputs have 

multiple wire connection points. To connect from the output of a component to the input of another 

component, simply use a hook-up wire to connect between the two wire connection points. For 

example, push button PB0 has six common wire connection points, so to use PB0 you can connect a 

wire to any one of these six connection points. Connect the other end of the hook-up wire to the one 

connection point for LED0. When you press the push button, the LED should turn on. Try this simple 

connection now to see that it works.

The logic gates on the trainer are also numbered for easy reference for when connecting a circuit 

up. For instance, the eight 4-input AND gates are numbered from 1 to 8. There are also eight 4-input 

OR gates, and they are also numbered from 1 to 8. So be careful when a circuit diagram says gate 

number 1 that you know which type of gate it is referring to, i.e., whether it is the 4-input AND gate, 
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the 4-input OR gate or even one of the other gates. For example, the following circuit diagram uses 

the number-1 4-input AND gate, the number-2 2-input AND gate and the number-6 2-input OR gate. 

In this courseware, we will use the notation 4-AND#1, 2-AND#2 and 2-OR#6 to refer to these three 

gates respectively. 1
6

2

The general breadboard area allows you to connect other components that are not available on 

the trainer together with your circuit. The breadboard consists of many holes for you to connect 

hook-up wires and integrated circuit (IC) chips. All of the holes are already connected together in 

groups. This way, you can connect two wires together (or connect a wire to an IC pin) simply by plug-

ging the two wires into two holes that are already connected together. The layout of the breadboard 

is shown in Figure 2.

Section 1

Section 2

Section 3

Section 4

Figure 2: Breadboard layout. The holes in section 1 are connected horizontally. The holes in sec-
tion 2 are connected vertically. The holes in section 3 are connected vertically. The holes in section 4 
are connected horizontally. Holes in any two different sections are not connected.

There are four general sections on the breadboard. All of the holes in section 1 are connected in 

common horizontally. The holes in this section are usually connected to VCC to provide power or the 

logic 1 signal to your circuit on the breadboard. Like section 1, all of the holes in section 4 are also 

connected in common horizontally. The holes in this section are usually connected to GND to provide 

a common ground or the logic 0 signal to your circuit. The holes in section 2 are connected vertically, 

so the five holes in each column are connected in common, but the vertical columns are not connected 

together. The holes in section 3 are also connected vertically like those in section 2, so the five holes 

in each column are connected in common, but the vertical columns between section 2 and section 3 

are not connected together. Finally, holes in any two different sections are not connected together.

In the case where you might need more connection points for a component on the trainer, you can 

use the breadboard to give you extra connection points. Typically, you use a breadboard to connect 

wires to an IC chip. A standard dual-in-line (DIP) IC chip would be plugged into the breadboard with 

one row of pins in section 2 and the second row of pins in section 3.
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Figure 1A:  DL-020 trainer with three jumper wires.

Let us now test out the trainer. The three thick lines in Figure 1A show three wires connected from 

the two switches, SW0 and SW1, to the inputs of the number-8 2-input NAND gate, and the output 

of this NAND gate is connected to LED0. In a schematic circuit drawing, this circuit would be shown 

as follows

SW1
SW0

LED08

Using three pieces of hook-up wires, make these same connections now on your trainer. Slide the 

two switches up and down and see how the LED turns on and off. At this point you may not under-

stand why the LED turns on and off the way it does. Just keep reading and you will find out very 

quickly, and you will be well on your way to designing your very own microprocessors.



Chapter 2 Microprocessors

www.globalspecialties.com5

Chapter 2

Introduction to Microprocessors

2.1.	 Introduction to Microprocessors

Whether you like it or not, microprocessors (also known as microcontrollers) control many aspects 

of our lives today – either directly or indirectly. In the morning, a microcontroller inside your alarm 

clock wakes you up, and another microcontroller adjusts the temperature in your coffee pot and 

alerts you when your coffee is ready. When you turn on the TV for the morning news, it is a microcon-

troller that controls the operation of the TV such as adjusting the volume and changing the channel. 

A microcontroller opens your garage door, and another inside your car releases your anti-lock break 

when you drive your car out. At the traffic light, a microcontroller senses the flow of traffic and turns 

on (hopefully) the green light for you when you reach the intersection. You stop by a gas station and 

a microcontroller reads and accepts your credit card, and let you pump your gas. When you walk up 

to your office building, a sensor senses your presence and informs a microcontroller to open the glass 

door for you. You press button eight inside the elevator, and a microprocessor controls the elevator to 

take you up to the 8th floor. During lunch break, you stop by a gift shop to buy a musical birthday card 

for a friend and find out that the birthday song is being generated by a microprocessor that looks like 

a dried-up pressed-down piece of gum inside the card. I can continue on with this list of things that 

are controlled by microprocessors, but I think you got the idea. Oh, one last example, do you know 

that it is also a microprocessor that is at the heart of your personal computer, whether it is a PC or a 

Mac? That’s right the Intel Duo Core® CPU inside a PC is a general-purpose microprocessor.

So you see, microprocessors are at the heart of all “smart” devices, whether they be electronic de-

vices or otherwise, and their smartness comes as a direct result of the decisions and controls that the 

microprocessors make. In this three part award-winning series on microprocessor design training kits, 

you will learn how to design and actually implement real working custom microprocessors. Designing 

and building microprocessors may sound very complicated, but don’t let that scare you, because it is 

not really all that difficult to understand the basic principles of how microprocessors are designed. 

After you have learned the materials presented in these labs, you will have the basic knowledge of 

how microprocessors are designed, and be able to design and implement your very own custom mi-

croprocessors!

There are generally two types of microprocessors: general-purpose microprocessors and dedicated 

microprocessors. General-purpose microprocessors, such as the Intel Pentium® CPU, can perform dif-

ferent tasks under the control of software instructions. General-purpose microprocessors are used in 

all personal computers.

Dedicated microprocessors, also known as microcontrollers, on the other hand, are designed to 

perform just one specific task. So for example, inside your cell phone, there is a dedicated micropro-

cessor that controls its entire operation. The embedded microprocessor inside the cell phone does 

nothing else but controls the operation of the phone. Dedicated microprocessors are therefore usu-
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ally much smaller, and not as complex as general-purpose microprocessors. Although the small dedi-

cated microprocessors are not as powerful as the general-purpose microprocessors, they are being 

sold and used in a lot more places than the powerful general-purpose microprocessors that are used 

in personal computers.

The electronic circuitry inside a microprocessor is called a digital logic circuit or just digital circuit, 

as opposed to an analog circuit. Digital circuits deal with just two discrete values, usually represented 

by either a 0 or a 1, whereas analog circuits deal with a continuous range of values. The main com-

ponents in an analog circuit usually consist of discrete resistors, capacitors, inductors, and transistors, 

whereas the main components in a digital circuit consist of the AND, OR and NOT logic gates. From 

these three basic types of logic gates, the most powerful computer can be made. Logic gates are built 

using transistors—the fundamental active component for all digital logic circuits. Transistors are just 

electronic binary switches that can be turned on or off. The two binary values, 1 and 0, are used to 

represent the on and off states of a transistor. So instead of having to deal with different voltages and 

currents as in analog circuits, digital circuits only deal with the two abstract values of 0 and 1. Hence, 

it is usually easier to design digital circuits than analog circuits.

Figure 3 (a) is a picture of a discrete transistor. Above the transistor is a shiny piece of raw silicon 

which is the main ingredient for making transistors. As you can see in the picture, the transistor has 

three connections: one for the signal input, one for the signal output, and one for turning on and 

off the transistor. Figure 3 (b) is a picture of hundreds of transistors inside an integrated circuit (IC) 

chip as viewed through an electron microscope. The right half of the picture is a magnification of the 

rectangle area in the left half. Each junction is a transistor.

	 	

	 (a)	 (b)

Figure 3:  Pictures of transistors: (a) a discrete transistor with a piece of silicon; (b) hundreds of 
transistors inside an IC chip as viewed through an electron microscope. The right half of the picture 
is a magnification of the rectangle area in the left half.

Figure 4 is a picture with several generations of integrated circuit chips. Going clockwise from the 

top-left corner is a lump of silicon which can be used to make many transistors; an Intel® 8085 micro-

processor with its top opened. The 8085 is an 8-bit general-purpose microprocessor with a maximum 

clock speed of around 10 MHz, and contains around 29,000 transistors; an Intel® 486 DX microproces-

sor. The 486 has a maximum clock speed of 100 MHz and contains around 1.2 million transistors; the 

2732 erasable-programmable-read-only-memory (EPROM) which has a non-volatile storage capacity 

of 4,096 bytes. The 2732 contains around 32,000 transistors; the tip of a pen which contains no transis-

tor; the 7440 chip which has two 4-input NAND gates and contains 20 transistors; and finally a single 

discrete transistor.
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Figure 4:  Picture of various integrated circuit chips. Going clockwise from the top-left corner 
is a lump of silicon, an eight-bit Intel® 8085 microprocessor with its top opened, an Intel® 486 
DX microprocessor, the 2732 erasable-programmable-read-only-memory (EPROM) with a capac-
ity of 4,096 bytes, the tip of a pen, the 7440 chip which contains two 4-input NAND gates, and a 
transistor.

Every digital circuit is categorized as either a combinational circuit or a sequential circuit. A micro-

processor circuit is composed of many different combinational circuits and many different sequential 

circuits. In part I of this three-part series on microprocessor design training kits you will learn how to 

design combinational circuits. In part II you will learn how to design sequential circuits. And finally 

in part III you will learn how to put these different combinational and sequential circuits together to 

make a real working microprocessor. The diagram below depicts the major parts of a microprocessor, 

and the sequential components are noted in bold italic font.
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2.2.	 Combinational and Sequential Circuit Analogy

A simple analogy of the difference between a combination and sequential circuit can be illustrated 

using the mechanical combination locks shown in Figure 5. There are actually two different types of 

combination locks. For the lock in Figure 5 (a), you just turn the three number dials in any order you 

like to the correct number and the lock will open. For the lock in Figure 5 (b), you also have three 

numbers that you need to turn to, but you need to turn to these three numbers in the correct se-

quence. If you turn to these three numbers in the wrong sequence the lock will not open even if you 

have the numbers correct. The lock in (a) is like a combinational circuit where the order in which the 

inputs are entered into the circuit does not matter, whereas, a sequential circuit is like the lock in (b) 

where the sequence of the inputs does matter.

(a)	 (b)

Figure 5: Two types of combination locks: (a) the order in which you enter the numbers does not 
matter; (b) the order in which you enter the numbers does matter.

So a sequential circuit is one where the output of the circuit (like opening the Figure 5 (b) lock) is 

dependent not only on the current inputs (as for combinational circuits), but also on all the previous 

inputs and the order in which these previous inputs were entered.  In other words, a sequential circuit 

has to remember its past history of inputs and also the ordering of the inputs. The up-channel but-

ton on a TV remote is another example of a sequential circuit. Pressing the up-channel button is the 

input to the circuit. However, just having this input is not enough for the circuit to determine what 

TV channel to display next. In addition to the up-channel button input, the circuit must also know the 

current channel that is being displayed, (i.e., knowing the history). If the current channel is channel 3, 

then pressing the up-channel button will change the channel to channel 4.

Examples of sequential circuits used inside a microprocessor circuit include all storage elements 

such as latches, flip-flops, registers and memories. The most important sequential circuit inside a mi-

croprocessor is the control unit, also known as a finite state machine (FSM). In this courseware you 

will learn how to design these and many other sequential circuits.

Combinational logic circuit design concepts are needed for designing sequential circuits. So if you 

have forgotten how to design combinational circuits, you might want to do a quick review before 

proceeding.



Chapter 3 Sequential Logic Circuits

www.globalspecialties.com9

Chapter 3

Sequential Logic Circuits

3.1.	 Identifying Sequential Circuits

 Before learning how to design sequential circuits, we need to be able to determine whether a 

given digital circuit is a sequential circuit or not. And if it is a sequential circuit, then we want to be 

able to formally describe its operation by deriving the state diagram for it.

You may recall from the discussion in the Combinational Logic Design Trainer on the identification 

of combinational circuits that it is very easy to tell whether a given digital circuit is a combinational or 

sequential circuit. Combinational circuits do not have any feedback loops, whereas, sequential circuits 

have one or more feedback loops as shown in Figure 6. A feedback loop exists when the output of a 

gate is connected back to one of its own input either directly or indirectly via other gates.

x
y
z f

(a)

y
z f

(b)

Figure 6: Identification of digital circuits: (a) combinational circuit; (b) sequential circuit.

There are generally two types of sequential circuits: (1) standard library components such as flip-

flops, registers, memories, and counters; and (2) custom controllers also referred to as finite state 

machines (FSM).

3.2.	 Analysis of Sequential Circuits

Analyzing a circuit means determining its functional operation. In analyzing a sequential circuit, 

we are given a sequential circuit and we want to find out how it operates. A truth table is used to 

describe the operation of a combinational circuit; however the functional operation of a sequential 

circuit is described formally with a state diagram. So what we want to do is to derive the state dia-

gram for a given sequential circuit.

A state diagram is a graph with nodes and directed edges connecting the nodes as shown in Fig-

ure 7. The nodes are labeled with the states of the circuit, which are all of its possible output values. 

For example, the node that is labeled f=0 means that when the circuit is in this state then the output 

signal f is a 0. The directed edges are labeled with the input signal(s) that cause the transition to go 

from one state of the circuit to the next, going in the direction of the directed edge. For example, the 

directed edge going from node f=0 to node f=1 is labeled yz = ×1. This edge means that if the circuit is 

currently in state f=0, and the input value for y is either a 0 or a 1 (denoted by the “don’t care” symbol 

×) and the input value for z is a 1, then this edge will be traversed and the circuit will go to state f=1.
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Figure 7: State diagram for the sequential circuit in Figure 6 (b).

The sequential circuit in Figure 6 (b) has one output f, which can have either a 0 or a 1 value. 

Hence, the state diagram for this circuit will have two nodes, one labeled f=0 and the second labeled 

f=1 as shown in Figure 7. Looking at the circuit, if f is currently a 0 then it doesn’t matter what the 

input value for y is, as long as z is a 0, f will remain at a 0. In the state diagram, this is denoted by 

the edge labeled yz = ×0 that originates from the state labeled f=0 and goes back to the same state. 

However, if z is a 1 then regardless of the value of y, f will change to a 1. This is denoted by the edge 

labeled yz = ×1 that originates from the state labeled f = 0 and goes to the state labeled f=1.

Continuing on with the analysis of the circuit in Figure 6 (b), if the circuit is currently in state f=1 

then regardless of the value of y, as long as z is a 1, f will remain at a 1. Furthermore, if y is a 1 and z 

is a 0 then f will also remain at a 1. This is denoted by the edge labeled yz = ×1 or 10 that originates 

from the state labeled f=1 and goes back to the same state. Finally, if both y and z are 0’s then f will 

output a 0 and the circuit will go back to state f=0 as denoted by the edge labeled yz = 00 that goes 

from state f=1 to state f=0.

For every node in the state diagram, there must be outgoing edges with labels for all possible com-

binations of input values. For example, if the circuit has two input variables then there must be ex-

actly four labels for the four combinations (00, 01, 10 and 11) on the outgoing edges from each node. 

The don’t care symbol × can be used to replace both values of a variable. Sometimes for simplicity, 

there might only be one outgoing edge from a state with no label at all. This would mean that from 

this state, this one edge would be taken regardless of what the inputs are. Because of this condition, 

the state diagram is said to be deterministic, meaning that from any state and given any combination 

of input values, you will know exactly which state to go to next, i.e., which edge to follow.

As another example, consider the sequential circuit in Figure 8 (a), and its state diagram in Figure 

8 (b). There is only one output Q, so the circuit has two possible states, which are represented by the 

two nodes labeled Q=0 and Q=1.

QS

R

(a)

Q=0 Q=1

SR = 0×

SR = 10
SR = 0× or 11SR = 1×

(b)

x y f

0 0 1
0 1 1
1 0 1
1 1 0

(c)

Figure 8: Analysis of a sequential circuit: (a) sample sequential circuit; (b) state diagram for circuit; 
(c) NAND gate truth table.

f=0 f=1

yz = ×1

yz = 00
yz = ×1 or 10yz = ×0
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For this analysis, we need to start with some obvious facts about the operation of the NAND gate. 

The truth table for the NAND gate is again shown in Figure 8 (c) just in case you have forgotten its 

operation. Notice in the NAND gate truth table that if one input is a 0, then it doesn’t matter what 

the other input is, the output will always be a 1. Applying this fact to the top NAND gate in the circuit 

and letting input S be a 0, we can immediately conclude that it doesn’t matter what the current state 

of the circuit is, i.e., what the current output value of Q is, and it doesn’t matter what the other input 

to the NAND gate is, the output of the NAND gate, which is Q, will always be a 1. From this observa-

tion, we get two edges, one labeled SR = 0X that goes from state Q=0 to Q=1, and the second edge 

also labeled SR = 0X but goes from state Q=1 back to itself. In other words, it doesn’t matter what the 

value of R and Q are, as long as S is a 0, Q will be a 1.

Knowing that from every node there must be outgoing edges with labels of all possible input com-

binations. So from node Q=1, we still have the two labels SR = 11 and SR = 10 to consider. (Remember 

that the label 0X takes care of the two combinations 00 and 01.) Consider what happens when in 

state Q=1 and the inputs SR are 11? Q and R are the two inputs to the bottom NAND gate, and with 

both of them being a 1, the output from the bottom NAND gate will be a 0. This 0 is directed back 

to the input of the top NAND gate, and so, regardless of the S input, the output from this top NAND 

gate, which is also Q, will be a 1. This is represented by the edge SR = 11 that goes from state Q=1 

back to itself.

For the last input condition, SR = 10, from state Q=1, the output of the bottom NAND gate will be 

a 1 because Q is a 1 and R is a 0. The 1 from the output of the bottom NAND gate is also the input to 

the top NAND gate. This 1, NANDed with the 1 from input S, will produce a 0 output at Q. So for the 

input condition SR = 10, the state changes from Q=1 to Q=0, as denoted by the edge labeled SR = 10 

that goes from node Q=1 to Q=0. Notice that if you continue to trace through the circuit with the 

same input values, Q will not change anymore.

From state Q=0, we have already considered the case for SR = 0×. There are two remaining cases 

to be considered from this state, SR = 10 and 11. With Q being 0 as an input to the bottom NAND 

gate, the output of this NAND gate is again a 1 regardless of the value of R. This 1, NANDed with the 

1 from input S, will produce a 0 output at Q. So for the input condition SR = 1X from state Q=0, the 

edge will go back to itself.

3.3.	 Finite State Machines

Finite state machines (FSM), also known as control units or controllers, are a special type of se-

quential circuits. The control unit, as you have already learned, is at the heart of all microprocessors 

and all other electronic devices. It is this control unit that controls the entire operation of a computer 

system or an electronic device. There are custom controllers for controlling the operation of a single 

dedicated electronic device such as your cell phone, and then there are the control units found inside 

a general-purpose microprocessor for performing different tasks.

Like all sequential circuits, a FSM needs to remember what it has done so far, what it is currently 

doing and then determines what it needs to do next. It is sort of like you following a recipe for mak-

ing your favorite dish. At each step in your recipe, you need to know the current step that you are 
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working on, and then you need to know what your next step will be. As the name suggests, a FSM 

only has a finite number of states that it can go to, just like there are only a finite number of steps 

in your recipe. The states in the FSM are equivalent to the steps in your recipe. The FSM operates by 

transitioning from one state to the next. At each state, the FSM will determine the next state to go to 

depending on the inputs from the external world (i.e., user inputs). Furthermore, at each step in your 

recipe, there are certain things that you need to do. Likewise, at each state, the FSM also needs to do 

something by generating outputs for the external world such as turning on a light.

Figure 9 shows a general block diagram of the different parts of a FSM. The state memory, which 

consists of one or more D flip-flops, is to store the current state of the FSM. The next-state logic circuit 

is a combinational circuit for determining the next state that the FSM should go to, and this depends 

on the current state that the FSM is in and the values of the input signals. The output logic circuit, 

also a combinational circuit, generates the appropriate output signals based on the current state that 

the FSM is in.

The clock signal connected to the state memory determines the speed in which the FSM operates. 

At every clock pulse, the state memory will change its contents, thereby, changing to a new state.

Clock

Current State Output SignalsExcitation

Input Signals
State

Memory

Output
Logic
Circuit

Next-state
Logic
Circuit

Figure 9: Block diagram of a FSM.

The above description of the FSM might sound a bit familiar to you, and it should, because it is 

basically the same description that we presented in the last section about the state diagram. In fact, 

a state diagram is used to formally describe the operation of a FSM.

3.4.	 Synthesis of Sequential Circuits

In the synthesis of sequential circuits, we are first given either an informal description1 of the cir-

cuit’s operation or a formal description with a state diagram. If we start with an informal description, 

then we need to first construct the formal state diagram for it. From the state diagram, we can derive 

the FSM circuit for it.

As you saw in Figure 9, a FSM consists of three components: the next-state logic circuit, the state 

memory and the output logic circuit. In synthesizing a FSM, we need to create these three individual 

components, and then connect them together to form the complete FSM circuit. 

The state memory simply consists of one or more D flip-flops, which you will learn more about in 
1	 As in when your supervisor gives you a verbal imprecise description of a circuit that he or she 

wants.
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Lab 5 and Lab 6. A D flip-flop is a simple memory circuit for storing one bit of information. One or 

more D flip-flops are used to store the current state of the FSM. The number of flip-flops required by 

the state memory depends on how many states the FSM will have. Since one flip-flop can store one 

bit, therefore one flip-flop can represent two different states of the FSM. A state memory with n flip-

flops can therefore represent up to 2n different states. For example, if your FSM has four states, then 

its state memory will need at least two D flip-flops since two flip-flops can represent four different 

things.

A D flip-flop has one input known as the D input (hence its name), and one output known as the 

Q output. The value of Q represents the state of the flip-flop. So to change the state of the flip-flop, 

which is to change the value of Q, you simply have to set D to be that value. In other words, whatever 

value you set D to be, Q is going to be that same value. The inputs to the D flip-flops are the excita-

tion values from the output of the next-state logic circuit. The combined outputs from the D flip-flops 

constitute the current state of the state memory. The current state value is used as inputs to both the 

next-state logic circuit and the output logic circuit.

Both the next-state logic circuit and the output logic circuit are combinational circuits, and having 

completed the Combinational Logic Design Trainer, you should be able to synthesize any combina-

tional circuit given its truth table. The truth table for the next-state logic circuit will have for its in-

puts, the input signals to the FSM and the current state information from the state memory, which are 

the Q outputs from the D flip-flops. The outputs for this truth table are the excitation values needed 

to change the state memory. The equations for the next-state logic circuit are referred to as the exci-

tation equations. There will be one excitation equation for each D flip-flop used.

The truth table for the output logic circuit will have for its inputs, the current state values from 

the state memory, which are the outputs from the D flip-flops. The outputs for this truth table will 

be whatever output signals you want the FSM to generate for controlling external components or 

devices.

Let us now synthesize the FSM circuit for the state diagram shown in Figure 10. It has two states, 

Q=0 and Q=1, two inputs, S and R, and one output f.

Q=0 Q=1

SR = 0×

SR = 10
SR = 0× or 11SR = 1×

f = 1f = 0

Figure 10: State diagram for the synthesis of a FSM.

In order to represent two different states, we will need one D flip-flop for the state memory. The 

inputs to the next-state logic circuit are Q (the current state value from the output of the D flip-flop), 

S and R. The output from the next-state logic circuit is the excitation value for changing the state of 

the D flip-flop, and since the state of the D flip-flop reflects the value at the D input, therefore, we 

want to set D to be the value of the next state that we want the D flip-flop to be in. Knowing this fact 
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about how the D flip-flop works, we can derive the truth table for the next-state logic circuit directly 

from the information presented in the state diagram as shown in Figure 11.

Figure 11: Truth table for the next-state logic circuit as obtained from the state diagram from 
Figure 10.

The inputs for this truth table are Q (the current state), and S and R (the inputs to the FSM). The 

output for this truth table is D (the next state). The Q values are the state values from which the 

directed edge in the state diagram originates. The S and R values are the values in the labels on the 

edges. And the D values are the state values from which the directed edge in the state diagram ter-

minates.

For example, for the first row in the truth table where QSR = 000, we see in the state diagram that 

from state Q=0, the edge with the label SR = 0× (which is for SR = 00) goes to state Q=1. Hence the 

next state is Q=1, and so in the truth table, we want D (the next state value) to be a 1. 

As another example, for the seventh row in the truth table where QSR = 110, we see in the state 

diagram that from state Q=1, the edge with the label SR = 10 goes to state Q=0. Hence the next state 

is Q=0, and so in the truth table, we want D (the next state value) to be a 0.  Reasoning this way, you 

should be able to complete the truth table as shown in Figure 11.

Having obtained the truth table for the next-state logic circuit, we can proceed to derive and sim-

plify the excitation equation for the next-state logic circuit as follows.

	 D =  Q’S’R’ + Q’S’R + QS’R’ + QS’R + QSR

		  = Q’S’R’ + Q’S’R + QS’R’ + QS’R + QS’R + QSR 

		  = Q’S’(R’ + R) + QS’(R’ + R) + QR(S’ + S)

		  = Q’S’ + QS’ + QR

		  = S’(Q’ + Q) + QR

		  = S’ + QR

Q
(current 
state)

S R
D

(next 
state)

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1
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For the output logic circuit, the input is Q (the current state value from the output of the D flip-

flop). The output from the output logic circuit is f. Since we want f to be a 0 when the FSM is in state 

Q=0, and f to be a 1 when in state Q=1, therefore, the equation for the output logic circuit is simply

	 f = Q

The complete FSM circuit with the next-state logic circuit, the state memory, and the output logic 

circuit is shown in Figure 12.

Output
Logic

Clk

D Q

R

Clock

S

Next-state
Logic

State
Memory

f

Figure 12: The complete FSM circuit for the state diagram from Figure 10.

Notice that this FSM circuit is completely different from the circuit shown in Figure 8 (a). But we 

synthesized this FSM from the state diagram that was obtained from the analysis of the circuit shown 

in Figure 8 (a). So just like with combinational circuits, if you start out with a sequential circuit, derive 

the state diagram for it, and then derive the FSM circuit from the state diagram, you will not get the 

same circuit that you started out with.
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Chapter 4

Labs
The following labs will teach you how to design and implement sequential circuits. Many of these 

circuits are standard components used in microprocessor circuits. Others, such as the FSMs, are custom 

controller sequential circuits. You will need to understand these circuits in order for you to use them 

and to construct the control unit in our Microprocessor Design Trainer where you will actually design 

and implement your very own custom real working microprocessor!

4.1.	 Lab 1: The NAND gate

Purpose

In this lab you will learn how to use the Sequential Logic Trainer by connecting the basic logic gates 

and I/Os correctly for a given circuit. You will use the trainer to confirm the operations of the NAND 

gate and the 4-to-1 multiplexer.

Introduction 

In the Combinational Logic Design Trainer you learned that the AND, OR and NOT gates are the 

basic building blocks for building any digital logic circuits because no matter how large or complex 

the circuit is, you can always build it using these three gates. However, you also learned that the 

NAND gate is also used very frequently in digital logic circuits and that it is also considered part of the 

basic building blocks. In the next few labs you will see that many of the simplest sequential circuits 

are built using the NAND gate. In fact, all digital circuits can be built using only the NAND gate, and 

in practice it turns out that the NAND gate is the best choice for implementing digital circuits. So in 

addition to familiarizing yourself with the use of the Sequential Logic Design Trainer, this lab will help 

you to refresh your memory to the operation of the NAND gate.

You recall that the name NAND stands for Not-AND because the NAND gate’s logical operation is 

equivalent to connecting the output of an AND gate to a NOT gate. The opposite is also true, if you 

connect the output of a NAND gate to a NOT gate, you will get back the AND gate. Once again, the 

truth table for a 2-input NAND gate is shown next. x and y are the two inputs, and f is the output.

x y f

0 0 1
0 1 1
1 0 1
1 1 0

There are four key points to remember from this truth table:

1)	 If one of the inputs is a 0, then it doesn’t matter what the other input is, the output will always 
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be a 1. For example, in the first two rows of the truth table when x = 0, then f = 1 regardless of 

the value of y.

2)	 If one of the inputs is a 1, then the output is always the inverse of the other input. For example, 

in the last two rows of the truth table when x = 1, then f = 1 when y = 0, and f = 0 when y = 1.

3)	 The output is a 0 only if both inputs are a 1. You can see this from the last row of the truth 

table.

4)	 If the two inputs are connected together so that the value of the two inputs is always the same, 

then the output is always the inverse of the input. For example, in the first row of the truth 

table when x = y = 0, then f = 1. And in the last row of the truth table when x = y = 1, then f = 0. 

 Experiments - Lab 1

1.	 The three thick lines in Figure 1A show three wires connected from the two switches SW1 and 

SW0 to the inputs of a two-input NAND gate, and the output of the NAND gate is connected to 

LED0. Using three pieces of wire make these three simple connections now on your trainer. Slide 

the two switches up and down and record the output on LED0 in the blank truth table below. You 

should see that it matches the NAND gate truth table shown above.

SW1 SW0 LED0

0 0
0 1
1 0
1 1

2.	 Verify that the NAND gate operates exactly like an AND gate connected to a NOT gate. Con-

nect two switches to the inputs of a two-input AND gate, connect the output of the AND gate to 

the input of the NOT gate, and finally connect the output of the NOT gate to a LED. Slide the two 

switches up and down and record the output of the LED in a truth table. You should see that it 

matches the NAND gate truth table shown above.

3.	 Verify key point number 1 above regarding the NAND gate. Connect one input of the NAND 

gate to GND, the other input to switch SW0, and the output to LED0. What is the output on LED0 

when you slide switch SW0 up and down? Reverse the two connections on the two NAND gate 

inputs. Do you get the same result?

4.	 Verify key point number 2 above regarding the NAND gate. Connect one input of the NAND 

gate to VCC, the other input to switch SW0, and the output to LED0. What is the output on LED0 

when you slide switch SW0 up and down? Reverse the two connections on the two NAND gate 

inputs. Do you get the same result?

5.	 Verify key point number 3 above regarding the NAND gate. Connect both inputs of the NAND 

gate to VCC and the output to LED0. What is the output on LED0?

6.	 Verify key point number 4 above regarding the NAND gate. Connect both inputs of the NAND 
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gate to SW0, and the output to LED0. What is the output on LED0 when you slide switch SW0 up 

and down?

7.	 The operation of the multiplexer was discussed in the Combinational Logic Design Trainer. 

Verify the operation of the 4-to-1 mux. Connect the output y of a 4-to-1 mux to a LED. Connect 

s0 of that mux to switch SW0. Connect s1 of that mux to switch SW1. Connect input 0 to VCC and 

connect the other inputs, 1, 2 and 3, to GND. Slide the two switches SW0 and SW1 up and down 

to determine when the LED is lit. Record your result in the truth table below.

Repeat the above but connect input 1 of the mux to VCC and connect the other inputs, 0, 2 and 

3, to GND. Slide the two switches SW0 and SW1 up and down to determine when the LED is lit. 

Repeat but connect input 2 to VCC and connect the other inputs, 0, 1 and 3, to GND. Slide the two 

switches SW0 and SW1 up and down to determine when the LED is lit. Repeat but connect input 

3 to VCC and connect the other inputs, 0, 1 and 2, to GND. Slide the two switches SW0 and SW1 

up and down to determine when the LED is lit.

s1 s0  y  

0 0
0 1
1 0
1 1

What you should have observed is that when SW1 = 0 and SW0 = 0 then the output is the same 

as input 0. When SW1 = 0 and SW0 = 1 then the output is the same as input 1. When SW1 = 1 and 

SW0 = 0 then the output is the same as input 2. When SW1 = 1 and SW0 = 1 then the output is 

the same as input 3.

8.	 The 4-to-1 mux on the trainer is connected in such a way so that if you only need to use a 

2-to-1 mux, you do not need to connect anything to inputs s1, 2, and 32. Verify the operation of 

this 4-to-1 mux operating as a 2-to-1 mux by only connecting s0 to SW0, input 0 to GND and input 

1 to VCC.  Connect output y to a LED. Slide SW0 up and down to determine when the LED is lit. 

Reverse the GND and VCC connections on inputs 0 and 1, and again see what happens. What you 

should have noticed is that when SW0 is 0, y always has the value of input 0, and when SW0 is 1, 

y always has the value of input 1.

2	 This is because s1 is pulled down to GND with a resistor.
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4.2.	 Lab 2: SR Latch

Purpose

In this lab you will learn about the SR latch. The SR latch is a memory element for storing one bit 

of data. It is one of the simplest sequential circuits. You will design the SR latch circuit, learn about its 

operation, and implement it on the trainer.

Introduction

The SR latch is capable of storing one bit of data, that is, either a 0 or a 1. The circuit is extremely 

simple; it consists of only two NAND gates connected in a loop as shown in Figure 13 (a). The output 

of the top NAND gate is connected to one input of the bottom NAND gate, and the output of the 

bottom NAND gate is connected to one input of the top NAND gate. The second input to both NAND 

gates are the two primary inputs to the SR latch. One input is labeled S’ (which stands for Set) and the 

other input is labeled R’ (which stands for Reset), thus, giving the latch its name. These two primary 

inputs allow the user to specify whether a logic 1 or a logic 0 is to be stored in the latch, respectively. 

There are also two outputs Q and Q’. Q is the output from the NAND gate with the S’ input, and Q’ 

is the output from the NAND gate with the R’ input. The SR latch can be in either one of two states; 

when it is storing a logic 1 it is in the set state, and when it is storing a logic 0 it is in the reset state. 

The value that the latch is currently storing is always available at the Q output. So by reading the 

value at the Q output we can find out the state that the latch is in.

Q

Q'

S'

R'

(a)

Q=0 Q=1

S'R' = 0×

S'R' = 10
S'R' = 0× or 11S'R' = 1×

(b)

S’ R’ Q Qnext Qnext’

0 0 × 1 1
0 1 × 1 0
1 0 × 0 1
1 1 0 0 1
1 1 1 1 0

S'

R'

Q

Q'
t0 t1 t2 t3 t4

Undefined

Undefined

t5

	 (c)	 (d)				    (e)

Figure 13: SR latch: (a) circuit using two NAND gates; (b) state diagram; (c) truth table; (d) sample 
operation trace; (e) logic symbol.

Q

Q'

S'

R'
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The naming convention for input signals in digital logic is that the primes (‘ ) in the names S’ and 

R’ denote that these input signals are active low, which means that a logic 0 will assert or enable the 

signal. Conversely, if a signal name does not have a prime then the signal is active high, which means 

that a logic 1 will assert or enable the signal. When we use appropriate input signal names that fol-

low this convention, we can easily understand the operation of a circuit by knowing when an input 

signal is asserted or enabled.

Thus, to make the SR latch go to the set state, we simply assert S’ by setting the input S’ to 0, and 

de-assert R’ by setting the input R’ to 1. Remember the operation of the NAND gate from Lab 1 is that 

as long as one input is a 0, the output of the NAND gate will always be a 1 regardless of the value at 

the second input. Hence Q is a 1 when S’ is a 0. This situation is shown in row two of the truth table 

shown in Figure 13 (c). Since Q is both an input and an output in the circuit, we differentiate it in the 

truth table by labeling Q as the input and Qnext as the output. The ´ in truth table means “don’t care” 

so it can be either a 0 or a 1. This same situation is also shown at time t0 in the sample operation trace 

shown in Figure 13 (d). For each signal name in the trace, drawing the horizontal line below the signal 

name denotes a logic 0 value and drawing the horizontal line above the signal name denotes a logic 

1. So at time t0, S’ is 0, R’ is 1, Q is 1, and Q’ is 0.     

On the other hand, if we assert R’ by setting it to 0, and de-assert S’ by setting it to 1, we will reset 

the latch by making Q = 0. To see this, we need to trace through the circuit starting from the primary 

input R’. With R’ being a 0, Q’ will be a 1 regardless of the value of the second input to this NAND 

gate (recall from the operation of a NAND gate). Q’ is connected to one input of the top NAND gate 

and S’ is connected to the second input. So with both Q’ and S’ being a 1, and since 1 NAND 1 is 0, 

thus Q will be a 0 and the latch is reset. This situation is shown in row three of the truth table shown 

in Figure 13 (c), and at time t2 in the sample operation trace shown in Figure 13 (d).

Now that we know how to set and reset the latch, the next question we want to ask is how does 

the latch remember a value? Let us go back to the first situation where we had set the latch by set-

ting S’ to 0 and R’ to 1, which resulted in Q being a 1. Since Q is also one input to the bottom NAND 

gate, therefore both inputs to the bottom NAND gate are a 1, and so the output of the bottom NAND 

gate at Q’ will be a 0. This 0 value from Q’ is routed back to one input of the top NAND gate, and so 

if we de-assert S’ by setting S’ to a 1, it will not affect the output of the top NAND gate which will 

remain at a 1. With no further changes to the two primary inputs S’ and R’, the latch will remain in 

the set state as shown in the fifth row of the truth table in Figure 13 (c), and at time t1 in the sample 

operation trace in Figure 13 (d).

Now let us repeat the above analysis but starting with the second situation where we had reset the 

latch by setting S’ to 1 and R’ to 0, which resulted in Q being a 0. This 0 value from Q is routed back to 

one input of the bottom NAND gate, and so if we de-assert R’ by setting R’ to a 1, it will not affect the 

output of the bottom NAND gate which will remain at a 1. Since Q’ is also one input to the top NAND 

gate, therefore both inputs to the top NAND gate are a 1, and so the output of the top NAND gate at 

Q will be a 0. Again, with no further changes to the two primary inputs S’ and R’, the latch, this time 

however, will remain in the reset state as shown in the fourth row of the truth table in Figure 13 (c), 

and at time t3 in the sample operation trace in Figure 13 (d).
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The main point to notice is that when we de-assert both S’ and R’, i.e. setting both of them to a 1, 

the latch remains in the state that it started out with. In other words, when S’ and R’ are both 1 then 

if the latch started out in the set state, then it will continue or remain in the set state, however, if it 

started out in the reset state, then it will continue or remain in the reset state. Looking again at the 

sample operation trace, at time t1 when S’ and R’ are both 1, Q is a 1 because before t1 at time t0, Q 

was also a 1. However, at time t3 again when S’ and R’ are both 1, Q is a 0 because before t3 at time 

t2, Q was also a 0. So the conclusion is that when both inputs are de-asserted, the SR latch remembers 

its previous state, and this is how the latch remembers one bit of data.

One last point to note is that if both S’ and R’ are asserted (i.e., S’ = R’ = 0), then both Q and Q’ are 

equal to a 1 since 0 NAND any value gives a 1. This is shown in the first row in the truth table, and at 

time t4 in the sample operation trace. Note that there is nothing wrong with having Q equal to Q’. It 

is just because we named these two points Q and Q’ that we don’t like them to be equal. However, 

we could have used another name instead of Q’. A problem occurs, however, when we de-assert both 

of them at exactly the same time because it might cause Q and Q’ to be undefined as shown at time 

t5 in the sample operation trace. In other words, sometimes Q is a 1 and Q’ is a 0, and sometimes it is 

reversed where Q is a 0 and Q’ is a 1. See Experiment 2 below.

The state diagram for the SR latch is shown in Figure 13 (b), and the logic symbol used for repre-

senting the SR latch in circuit diagrams is shown in Figure 13 (e).

Experiments - Lab 2

1.	 Implement the SR latch circuit as shown in Figure 13 (a), and confirm that it operates accord-

ing to the truth table shown in Figure 13 (c). Connect the two inputs S’ and R’ to two switches, and 

connect the two outputs Q and Q’ to two LEDs. Slide the two switches up and down and record the 

output of the two LEDs in a truth table. You should see that it matches the truth table in Figure 

13 (c).

2.	 Connect the two inputs S’ and R’ to the same push button, and connect Q and Q’ to two LEDs. 

What happens when you press the button? Replace one of the NAND gate with another one. Do 

you get the same result? Repeat this several times with other NAND gates and/or different length 

of wires and see what happens.

What you should observe is that initially when both S’ and R’ are at a 0, both LEDs should be on. 

When you press the button, one of the LED will turn off. However, you will not know which LED 

will turn off because it depends on which NAND gate you use. Sometimes, the LED connected to 

Q will turn off and sometimes the LED connected to Q’ will turn off. The reason is that one input 

signal will always get de-asserted before the other, but you don’t know which one because of 

the connections made. This is why Q and Q’ are undefined when you de-assert both of them at 

exactly the same time.

3.	 Instead of using two NAND gates, the SR latch can also be constructed by using two NOR 

gates. Using NOR gates, the two primary inputs are active high instead of active low, so their labels 

are S and R, instead of S’ and R’. Implement the SR latch circuit with two NOR gates and determine 

its operation by deriving the truth table for it.
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4.	 Sometimes it is useful to have an enable input signal for the SR latch. This can be formed by 

adding two more NAND gates to the SR latch as shown next.

Q

Q'

S'

R'

S

E

R

The active high set S and reset R inputs are only passed to the main section of the latch when the 

enable input E is a 1. If E is a 0, then both S’ and R’ will be 1 and Q will remember its previous 

value. Implement this SR latch with enable circuit and determine its operation by deriving the 

truth table for it.
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4.3.	 Lab 3: D Latch

Purpose

In this lab you will learn about the D latch. The D latch is a memory element for storing one bit of 

data. You will design the D latch circuit, learn about its operation, and implement it on the trainer.

Introduction

Like the SR latch, the D latch is also a memory element for storing one bit of data, but instead of 

having two inputs for changing the state of the latch, the D latch has only one input called D, (which 

stands for Data) for changing the state of the latch. The circuit for the D latch is shown in Figure 14 

(a). As you can see, the circuit is almost identical to that of the SR latch. The only thing different is the 

NOT gate added between the S’ and R’ inputs, and the R’ input becomes the D input.

By connecting a NOT gate between the S’ and R’ inputs, S’ and R’ can never have the same value, 

and so they will always be inverses of each other. In other words, in the SR latch truth table in Figure 

13 (c), we have eliminated the three rows where S’ and R’ have the same value. What is left are only 

the two rows where S’ and R’ are different, and that reduces to the two rows shown in the truth table 

for the D latch in Figure 14 (c).

The state diagram for the D latch is shown in Figure 14 (b), and its logic symbol in Figure 14 (d).

If you look at the D latch truth table and understand its operation, may be you can see that the D 

latch is pretty useless, because what the truth table is saying is that the output Qnext is always the same 

as the input D. Well, isn’t this exactly what a piece of wire does? If you connect one end of a wire to 

a 0, the other end will have a 0, and if you connect one end to a 1, then the other end will have a 1. 

In other words, the circuit has lost its capability to remember a previous value. This should have been 

obvious since in the SR latch, the circuit remembers a value only when S’ and R’ are both 1 (i.e. they 

have to be the same).

Q

Q'

S'

R'D

(a)

Q=0 Q=1

D = 1

D = 0
D = 1D = 0

(b)

D Q Qnext Qnext’

0 × 0 1
1 × 1 0

(c)

Q

Q'

D

(d)

Figure 14: D latch: (a) circuit; (b) state diagram; (c) truth table; (d) logic symbol.



Sequential Logic Design

Global Specialties 26

Experiments - Lab 4

1.	 Implement the D latch circuit as shown in Figure 14 (a), and confirm that it operates according 

to the truth table shown in Figure 14 (c). Connect the input D to a switch, and connect the two 

outputs Q and Q’ to two LEDs. Slide the input switch up and down and record the output of the 

two LEDs in a truth table. You should see that it matches the truth table in Figure 14 (c).

2.	 What happens if you replace the two NAND gates in the D latch circuit with two NOR gates?
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4.4.	 Lab 4: D Latch with Enable

Purpose

In this lab you will learn about the D latch with enable. The D latch with enable is a level-sensitive 

memory element for storing one bit of data. You will design the D latch with enable circuit, learn 

about its operation, and implement it on the trainer.

Introduction

We found out from the previous lab that the D latch cannot remember its previous state because 

the output Q always changes to whatever the input D is. In order to restore this memory capability, 

we need to add an enable signal E to the D latch. The circuit for the D latch with enable is shown in 

Figure 15 (a). Like the D latch, the output Q follows the D input but only as long as the enable signal 

E is asserted. However, when E is de-asserted Q will not change regardless of the value of D. In other 

words, when E is a 1 (i.e., enabled) then the value of Q is the same as the value of D. However, when E 

is a 0 then Q will not change and remains the same regardless of the value of D. So the latch remem-

bers its current value when E = 0.

Notice in the circuit shown in Figure 15 (a) that the right half of the circuit is identical to the SR 

latch. On the left half, the S and R inputs are connected together via a NOT gate so that R is always 

the inverse of S and vice versa. The two NAND gates on the left half act as a switch because when E 

is 0, the output of the two NAND gates is a 1 regardless of the other input. So with S’ = R’ = 1, the SR 

latch on the right half of the circuit will remember the current value of Q as shown in the first two 

rows of the truth table in Figure 15 (c), and at times t0 and t1 in the sample operation trace in Figure 

15 (d). When E is 1, the output of the two NAND gates will be the inverse of the other input. So when 

D is 0, then S’ = 1 and R’ = 0 and so Q will be a 0 (the same as D) as shown in the third row of the truth 

table in Figure 15 (c), and at time t2 in the sample operation trace in Figure 15 (d). However, when D 

is 1, then S’ = 0 and R’ = 1 and so Q will be a 1 (again the same as D) as shown in the fourth row of 

the truth table in Figure 15 (c), and at time t3 in the sample operation trace in Figure 15 (d). In other 

words, when E is 1, then Q = D, but when E is 0, then Q stays the same.

The state diagram for the D latch with enable is shown in Figure 15 (b), and the logic symbol in 

Figure 15 (e).

S

R

Q

Q'

E

R'

S'D

(a)

Q=0 Q=1

ED = 11

ED = 10
ED =

0× or 11
ED =

0× or 10

(b)

Figure 15: D latch with enable: (a) circuit; (b) state diagram
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E D Q Qnext Qnext’

0 × 0 0 1
0 × 1 1 0
1 0 × 0 1
1 1 × 1 0

(c)

E

D

Q

Q'
t0 t2 t3t1

(d)

Q

Q'

D

E

(e)

Figure 15: D latch with enable: (c) truth table; (d) sample operation trace; (e) logic symbol.

Experiments - Lab 4

1.	 Implement the D latch with enable circuit as shown in Figure 15 (a), and confirm that it oper-

ates according to the truth table shown in Figure 15 (c). Connect the two inputs D and E to two 

switches, and connect the two outputs Q and Q’ to two LEDs. Slide the two switches up and down 

and record the output of the two LEDs in a truth table. You should see that it matches the truth 

table in Figure 15 (c).

2.	 What happens if you replace the four NAND gates in the D latch with enable circuit with four 

NOR gates?

3.	 What happens if you reverse the NOT gate and connect the input D to R?

4.	 The D latch with enable can also be constructed using a 2-to-1 mux in conjunction with the D 

latch circuit instead of the two additional NAND gates as shown next.

Implement this version of the D latch with enable circuit and see that it operates exactly the same.

Another variation of the D latch with enable circuit is adding both a Set’ and Clear’ input signals 

to set or clear the state of the latch regardless of the D input. This circuit is shown next.

Implement this circuit and test out its operation especially with the two new inputs. Keep in mind 

that these two new inputs are active low.
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4.5.	 Lab 5: D Flip-Flop

Purpose

In this lab you will learn about the D flip-flop. The D flip-flop is an edge-triggered memory ele-

ment for storing one bit of data. You will design the D flip-flop circuit, learn about its operation, and 

implement it on the trainer.

Introduction

One problem with the D latch with enable is that it is level sensitive. What that means is that 

whenever the enable signal E is asserted (i.e. set to a 1) the state of the latch will change according to 

the D input. But if D changes several times while E is asserted then Q, which is the state of the latch, 

will also change several times. In a computer system we do not want this to happen. Instead what 

we want is for all memory elements to change their states only once at exactly the same time and at 

regular intervals. With this, all memory elements in the system will capture and store a value at one 

precise moment in time. To achieve this, we use a D flip-flop which is edge triggered as opposed to a 

D latch which is level sensitive. In an edge-triggered D flip-flop, a value is captured and stored only at 

the rising edge of the enable signal, that is, not when the enable signal is at a steady 0 or a steady 1, 

but rather only at the moment when the enable signal changes from a 0 to a 1.

The circuit for the D flip-flop is shown in Figure 16 (a). It is composed of two D latches with enable 

connected in series where the Q of the first latch is connected to the D of the second latch. Using 

a NOT gate, the two enable inputs E are connected such that one latch is always enabled while the 

other is disabled. The new enabled signal is renamed as the Clock signal. The key to the D flip-flop be-

ing edge-triggered is that the two latches are never enabled at the same time. As a result, the signal 

from the primary input D signal is never passed straight through to the primary output Q signal in 

one time period because the signal is always blocked by one disabled latch.
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Figure 16: D flip-flop: (a) circuit; (b) state diagram; (c) truth table; (d) sample operation trace; (e) 
logic symbol.
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The first latch (called the Master) is enabled when Clock = 0 because of the inverter, and so QM 

follows the primary input D. However, the signal at QM cannot pass over to the primary output Q, be-

cause the second latch (called the Slave) is disabled when Clock = 0. When Clock = 1, the master latch 

is disabled, but the slave latch is enabled so that the output from the master latch, QM, is transferred 

to the primary output Q. The slave latch is enabled all the while that Clock = 1, but its content changes 

only once at the rising edge of the clock, because once Clock is 1, the master latch is disabled, and the 

input to the slave latch, QM, will be constant. Therefore, after the Clock changes to a 1 and the slave 

latch is enabled, the primary output Q will not change again because the input QM is not changing. 

As a result, the state of the D flip-flop, i.e., the value at the primary output Q will only change once 

at each rising edge of the clock.

The state diagram for the D flip-flop is shown in Figure 16 (b). Notice that the Clock input signal is 

not included in this state diagram, and that this state diagram is exactly the same as the state diagram 

for the D latch shown in Figure 14 (b). When working with flip-flops, the Clock input signal is always 

assumed to be there, and so for convenience, it is never implicitly labeled. Furthermore, because of 

the existence of the clock, the flip-flop will always change its state at the active edge of the clock 

signal. 

Figure 16 (c) shows the operation table for the D flip-flop. The á symbol signifies the rising edge 

of the clock. When Clock is either at 0 or 1, the flip-flop retains its current value (i.e., Qnext = Q). Qnext 

changes and follows the primary input D only at the rising edge of the clock. Figure 16 (d) shows a 

sample trace for the D flip-flop. Notice that when Clock = 0, QM follows D, and the output of the slave 

latch, Q, remains constant. On the other hand, when Clock = 1, Q follows QM, and the output of the 

master latch, QM, remains constant.

The logic symbol for the positive edge-triggered D flip-flop is shown in Figure 16 (e). The small 

triangle at the clock input indicates that the circuit is triggered by the edge of the signal, and so it is 

a flip-flop. Without the small triangle, the symbol would be for a latch.

Clock

As mentioned in the introduction, latches are level sensitive because their outputs are affected 

by their inputs as long as they are enabled. Their memory state can change several times as long as 

the enable signal is asserted. In a computer system, we like to synchronize all of the state changes to 

happen at precisely the same moment and at regular intervals. In order to achieve this, two things 

are needed: (1) an edge-triggered memory element, and (2) a synchronizing signal. We have already 

looked at the D flip-flop as the edge-triggered memory element. The synchronizing signal in a com-

puter system is the clock signal.

The clock is simply a very regular square wave signal, as shown in Figure 17. The rising edge of the 

clock signal is when the signal changes from 0 to 1. Conversely, the falling edge of the clock is when 

the signal changes from 1 to 0. We will use the symbol á to denote the rising edge and â for the fall-

ing edge. In a computer system, either the rising edge or the falling edge of the clock can be used as 

the synchronizing signal for writing data into a memory element. This edge signal is referred to as 

the active edge of the clock. In this trainer, we will use the rising clock edge as the active edge un-
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less noted otherwise. Thus, at every rising clock edge, data will be clocked or stored into the memory 

element.

Figure 17: Clock signal.

A clock cycle is the time from one rising edge to the next rising edge or from one falling edge 

to the next falling edge. The speed of the clock, measured in hertz (Hz), is the number of cycles per 

second. Typically, the clock speed for a microprocessor in an embedded system runs around 20 MHz, 

while the microprocessor in a personal computer runs upwards of 2 GHz and higher. A clock period is 

the time for one clock cycle (seconds per cycle), so it is just the inverse of the clock speed.

The speed of the clock is determined by how fast a circuit can produce valid results. For example, 

a small two-level combinational circuit can produce valid results at its output much sooner than, say, 

a more complex ALU circuit can. Of course, we want the clock speed to be as fast as possible, but it 

can only be as fast as the slowest circuit in the entire system. We want the clock period to be the time 

that it takes for the slowest circuit to get its input from a memory element, operate on the data, and 

then write the data back into a memory element.

Experiments - Lab 5

1.	 Implement the D flip-flop circuit from Figure 16 (a) and shown in detail below. Confirm that it 

operates according to the truth table shown in Figure 16 (c). Connect the Clock input to the clock 

source on the trainer, connect the D input to a switch, and connect the two outputs Q and Q’ to 

two LEDs. Set the clock speed on the trainer to 1 Hz. Slide the D input switch up and down and 

record the output of the two LEDs in a truth table. You should see that it matches the truth table 

in Figure 16 (c).
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2.	 You may have noticed that sometimes when you change the D input that there is a slight de-

lay before the Q LED follows the change in D. This is because the change occurs only at the rising 

edge of the clock and with the clock speed set at 1 Hz, there will be one rising edge in every sec-

ond. Try changing the D input several times in one second and see what happens to the Q output.
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3.	 A more efficient D flip-flop circuit, but more difficult to understand, is shown next.
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Implement this version of the D flip-flop circuit and see that it operates exactly the same.

4.	 In experiment 2 you saw that the output Q does not change immediately when you change 

the D input. There are times when you want Q to change immediately and not having to wait until 

the rising edge of the clock. A variation of the D flip-flop has an asynchronous Set’ and Clear’ input 

signals to set and clear the state of the flip-flop asynchronously regardless of the clock signal or 

the D input. The circuit for the D flip-flop with asynchronously set and clear inputs is shown next.
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Implement this circuit and test out its operation especially with the two new inputs. Connect 
the Clock input to the clock source on the trainer, connect the D, Set’ and Clear’ inputs to three 
switches, and connect the two outputs Q and Q’ to two LEDs. Set the clock speed on the trainer 
to 1 Hz. Keep in mind that the two new inputs, Set’ and Clear’, are active low and that they are 
not dependent on the clock. Notice that when you change D, Q may not change immediately be-
cause the change takes place at the rising clock edge, however, when you change Set’ or Clear’, 
Q changes immediately.

5.	 Traditionally, in addition to the D flip-flop, there are three other types of flip-flops. They are 

the SR flip-flop, the JK flip-flop and the T flip-flop. These three flip-flops can all be derived from 

the D flip-flop by adding a small combinational circuit before the D input of the D flip-flop. The 

state diagrams and circuits for these three flip-flops are shown in Figure 18. Implement these three 
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different flip-flops and see that they operate according to their corresponding state diagram.
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Figure 18: State diagram and circuit for other types of flip-flops: (a) SR flip-flop; (b) JK flip-flop; (c) 

T flip-flop.
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4.6.	 Lab 6: D Flip-Flop with Enable

Purpose

In this lab you will learn about the D flip-flop with enable. The D flip-flop with enable is like the 

D flip-flop but with an added enable E input. You will design the D flip-flop with enable circuit, learn 

about its operation, and implement it on the trainer.

Introduction

A keen student might have noticed that in creating the D flip-flop, we have again re-introduced 

a recurring problem, and that is it cannot remember its previous state. Just like the D latch, the Q 

output always reflects the D input, but this time it only changes at the rising edge of the clock. Just 

like the D latch, we need to add an enable E signal to the D flip-flop in order to restore its memory 

capability. The circuit for the D flip-flop with enable is shown in Figure 19 (a).

To create the enable E signal to the D flip-flop, we start with the D flip-flop. A 2-to-1 multiplexer is 

added so that the output of the mux is connected to the D input of the flip-flop. The Q output of the 

flip-flop is the primary Q output and is also connected to the 0 input of the mux. The new primary D 

input is connected to the 1 input of the mux. The select line of the mux becomes the enable E signal.

  When E = 0, the current state of the flip-flop, i.e. the value at Q, is routed back to the D input of 

the flip-flop via the 0 input of the mux. Hence, when E = 0, the state of the circuit remains the same, 

which means that it remembers the previous value. On the other hand, when E = 1, the primary D 

input is routed via the 1 input of the mux to the D input of the flip-flop. Hence, at the rising edge of 

the clock, the state of the flip-flop at Q will change to the same value as D.

The state diagram for the D flip-flop with enable is shown in Figure 19 (b), its truth table in Figure 

19 (c), and its logic symbol in Figure 19 (d). Keep in mind that, just like the D flip-flop, the state of this 

circuit, i.e., the value at output Q changes only at the rising edge of the clock, and that the existence 

of the Clock signal is implied. Other than this, the state diagram is exactly the same as that for the D 

latch with enable.
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Figure 19: D flip-flop with enable: (a) circuit; (b) state diagram; 
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Clock E D Q Qnext Qnext’

0 × × 0 0 1
0 × × 1 1 0
1 × × 0 0 1
1 × × 1 1 0

↑ 0 × 0 0 1

↑ 0 × 1 1 0

↑ 1 0 × 0 1

↑ 1 1 × 1 0

(c)

Q

Q'

D

Clock

E

(d)

Figure 19: D flip-flop with enable: (c) truth table; (d) logic symbol.

Experiments - Lab 6

1.	 Implement the D flip-flop with enable circuit from Figure 19 (a) and shown in detail below. 

Confirm that it operates according to the truth table shown in Figure 19 (c). Use a 4-to-1 mux for 

the 2-to-1 mux in the circuit. Connect E to s0 of this mux, connect D to input 1 of this mux, and 

connect the primary output Q to input 0 of this mux. Connect the Clock input to the clock source 

on the trainer, connect the two inputs D and E to two switches, and connect the two outputs Q 

and Q’ to two LEDs. Set the clock speed on the trainer to 1 Hz. Slide the two input switches for D 

and E up and down and record the output of the two LEDs in a truth table. You should see that it 

matches the truth table in Figure 19 (c).
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2.	 The trainer comes with four built-in D flip-flops with enable. Compare the operation of your 

D flip-flop with enable circuit with the built-in D flip-flop with enable circuit on the trainer and 

verify that their operations are identical. 

3.	 The E enable signal for these built-in flip-flops is pulled-up with a resistor to VCC so that if you 

don’t connect anything to it, it is asserted, i.e. set to a 1. Disconnect the wire from the E input and 

see that the Q output still follows the D input.

4.	 The built-in D flip-flop on the trainer also has an asynchronous Clear input to reset Q to 0 im-

mediately rather than having to wait until the rising edge of the clock. This Clear input is active 

high. Connect the Clock signal to the 1 Hz clock source, connect the Clear and D inputs to two 

switches, connect the E input to VCC, and connect the output Q to a LED. See how the D and Clear 

inputs affect the Q output differently.
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4.7.	 Lab 7: Register

Purpose

In this lab you will learn about the register. The register is an edge-triggered memory element for 

storing one or more bits of data together as a single unit. You will design a 4-bit register circuit, learn 

about its operation, and implement it on the trainer.

Introduction
Very often in a computer system, we need to store a value that requires more than one bit. For 

example, a byte of data requires eight bits of storage. We need to treat these eight bits as one entity 

rather than as eight separate bits. This is easily accomplished by connecting one or more D flip-flops 

with enable together in parallel as shown in Figure 20 (a). The clock signals from all of the flip-flops 

are connected together in common, similarly the enable signals from all of the flip-flops are also con-

nected together in common, and the asynchronous clear signals are also connected together in com-

mon. The multiple D input signals and the multiple Q output signals form the individual bits of the 

unit. The common enable signal is usually given the name Load, because when this signal is asserted, 

the multi-bit value from the D inputs will be stored into the flip-flops, all at exactly the same time at 

the next rising edge of the clock. Asserting the asynchronous Clear signal will immediately zero the 

register, and does not have to wait for the next rising clock edge. The multi-bit value stored in the 

flip-flops can be read at any time from the Q outputs. By convention, the right-most flip-flop is bit 0 

of the value, the next bit to the left is bit 1, etc. The circuit shown in Figure 20 (a), consisting of four 

D flip-flops, is called a 4-bit register.
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current value
0 1 Load in value from the D inputs at next 

rising clock edge
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Figure 20: 4-bit register: (a) circuit; (b) logic symbol; (c) operation table.
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Experiments - Lab 7

1.	 Implement the circuit shown in Figure 20 (a) and verify that it operates according to the op-

eration table shown in Figure 20 (c). Use the four built-in D flip-flops on the trainer. Connect the 

four D inputs to four switches SW3, SW2, SW1 and SW0, and connect the four Q outputs to the 

four LEDs LED3, LED2, LED1 and LED0. Connect all four Clear input signals to push button PB1 and 

all four Load input signals to push button PB0. Connect the Clock signal to the clock generator on 

the trainer. For the clock generator, slide the toggle switch to the up position to select the 20 Hz 

clock speed. Set the four data switches to any 4-bit value that you like. Press PB0 to load in the 

value from the data switches and observe the LEDs which should match the setting on the data 

switches. Press PB1 and see that the LEDs are all cleared immediately.

2.	 Experiment by changing the data switches and pressing the load button each time.

3.	 What happens when you press PB1 to clear the register?

4.	 Set the clock speed to 1 Hz and press PB0 to load in the value from the data switches. Did 

you notice a slight delay from the time you pressed the load button to the time the LEDs changed 

to reflect the data switches? Repeat this several times, each time changing the data switches, to 

confirm this fact. How do you explain this phenomenon?

5.	 Set the clock speed to 1 Hz and press PB0 to load in the value from the data switches. Now 

press PB1 to clear the register. Did you notice any delay for the register to clear? Repeat this sev-

eral times to confirm this fact. How do you explain this phenomenon?
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4.8.	 Lab 8: Binary Up Counter

Purpose

In this lab you will learn about counters. A binary up counter counts in binary (base two) starting 

from zero and going up in increments of one. You will implement a 4-bit binary up counter circuit 

and verify its operations.

Introduction

A binary up counter counts in binary starting from zero and going up in increments of one. When 

it reaches the last count where all the bits are a 1, it reverts back to zero on the next count and out-

puts an overflow signal.

The binary counter can be constructed using a modified register where the data inputs for the 

register come from an adder. To get the next count, we simply take the current value stored in the 

register, add a 1 to this value using the adder, and then store the result back into the register. To con-

struct our adder, we do not need to use the full adder as discussed in the Combinational Logic Design 

Trainer because the full adder adds two operands and the carry bit. What we need is just to add one 

operand with a 1, and this 1 can be provided through the carry bit. In other words, we can eliminate 

one operand from the full adder. This reduced adder is called a half adder (HA), and its truth table is 

shown in Figure 21 (a). We have a as the only input operand, cin and cout are the carry-in and carry-out 

signals, respectively, and s is the sum of the addition. In the truth table, we are simply adding a plus 

cin to give the sum s and possibly a carry-out, cout. From the truth table, we obtain the two equations 

for cout and s shown in Figure 21 (b). The HA circuit is shown in Figure 21 (c) and its logic symbol in (d).

a cin cout s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(a)

cout = a cin

s = a ⊕ cin

(b)

cina
s

cout

(c)

s a
cout cin

HA

(d)

Figure 21: Half adder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol.

To build our 4-bit binary up counter, four half adders are daisy-chained together through the cin 

and cout signals, and connected to a 4-bit register as shown in Figure 22 (a). Each of the adder operand 

input a comes from the Q output of the register for the current value. The sum result s from the ad-

der is connected to the D input of the register so that the incremented value is stored back into the 

register. The initial carry-in signal, c0, is used as the count enable signal, since a 1 on c0 will result in 

adding a 1 to the register value, and a 0 will not. Just like the register, the current count value can be 

read from the Q outputs. As long as Count is asserted, the counter will increment by 1 on each rising 
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edge of the clock pulse until Count is de-asserted. When the count reaches 24 – 1 (which is equivalent 

to the binary number 1111), the next count will revert back to 0, because adding a 1 to 1111 is 10000, 

and so the Overflow bit will be a 1 and the original four bits will reset to 0. The Clear signal allows an 

asynchronous reset of the counter to 0.

We are assuming that the flip-flops are always enabled, i.e., the E signals are asserted all the time.
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Clear Count Operation

1 × Reset counter to zero
0 0 No change
0 1 Count up

(c)

Figure 22: A 4-bit binary up counter: (a) circuit; (b) logic symbol; (c) operation table.

Experiments - Lab 8

1.	 Implement the circuit shown in Figure 22 (a) and verify that it operates according to the op-

eration table shown in Figure 22 (c). Use the four built-in D flip-flops on the trainer. For each of the 

four HA circuits, you need to connect the circuit shown in Figure 21 (c). Connect the four Q outputs 

to the four LEDs LED3, LED2, LED1 and LED0. Connect the Overflow signal to LED4. Connect the 

four Clear input signals to push button PB1 and the Count input signal to push button PB0. Con-

nect the Clock signal to the clock generator on the trainer, and set the clock generator speed to 1 

Hz. For the built-in flip-flops on the trainer, you don’t need to connect anything to the E enable 

signal because it is pulled-up with a resistor to VCC. Normally, you will need to connect E to VCC 

to enable the flip-flop. Press PB0 to start the count and observe the LEDs which should increment 

in binary at a rate of 1 count per second.

2.	 Experiment by pressing and releasing the count button PB0. Notice what happens when the 

count reaches 1111.

3.	 What happens when you press PB1 to clear the register?

4.	 Set the clock speed to 20 Hz and press PB0 to count. Can you still see the count?
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4.9.	 Lab 9: Car Security System Version 2

Purpose

In this lab you will design and implement an improved version of the car security system that you 

implemented in Lab 3 in the Combinational Logic Design Trainer.

Introduction

In Lab 3 of the Combinational Logic Design Trainer, we designed a combinational circuit for a car 

security system where the siren will come on when the master switch is on and either the door switch 

or the vibration switch is also on. The problem with this combinational circuit, however, is that as soon 

as both the door switch and the vibration switch are turned off, the siren will turn off immediately, 

even though the master switch is still on. In practice, what we really want is to have the siren remain 

on after it has been triggered, even after both the door and vibration switches are turned off, until 

we turn the system off with the master switch. In order to do this, we need to remember the state of 

the siren. In other words, for the siren to remain on, it should be dependent not only on whether the 

door or the vibration switch is on, but also on the fact that the siren is currently on.

The improved sequential siren circuit is shown in Figure 23. We will use the state of a SR latch to 

remember the state of the siren. In other words, the output of the latch at Q will drive the siren. The 

state of the latch is set by the original combinational siren circuit. In other words, the siren output sig-

nal from the original combinational siren circuit is used to set the latch, so that the latch is set when 

the master switch is on and either the door switch or the vibration switch is also on. Only the master 

switch is connected to the reset signal R’ of the latch because once the latch has been set, we want 

it to remain set until it is reset by the master switch. So once the latch is set, the siren will remain on 

and will not be turned off even when both the door and vibration switches are turned off. A NOT 

gate is needed between the output of the combinational siren circuit and the set input S’ of the latch 

because S’ is active low whereas the siren output from the combinational circuit is active high.

Q
S'

R'

Siren
SD

M
V

Figure 23: Improved car security system circuit with memory.
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Experiments - Lab 9

1.	 Implement the car security system circuit shown in Figure 23. Connect the master switch M to 

SW0. Connect the door switch D and the vibration switch V to the two push buttons PB0 and PB1. 

Connect the siren output at Q to LED0. Verify that the circuit operates as described.

2.	 Another way to design this version of the car security system is to start with a state diagram 

and then derive the FSM circuit for it as shown next.

To derive the state diagram, we note that there are two states that the system can be in: the siren 

is off or the siren is on. The siren is turned off in the state Q=0, and turned on in the state Q=1. 

There are also the three input signals M, D and V.

Starting from state Q=0 when the siren is off, the siren will be turned on, i.e., go to state Q=1, 

only when M=1 and, either D=1 or V=1. From state Q=1, the siren will remain on as long as M=1. 

It will go back to state Q=0 only when M=0. From this reasoning, we obtain the following state 

diagram.

Q=0 Q=1

MDV = 0××

MDV = 1×1, 11×
MDV = 1××MDV =

0××, 100

siren = 1siren = 0

With just two states in the state diagram, only one D flip-flop is required by the FSM for its state 

memory.

From the above state diagram we can directly derive the following truth table for the next-state 

logic circuit.

Q M D V Qnext
0 0 × × 0
0 1 0 0 0
0 1 × 1 1
0 1 1 × 1
1 1 × × 1
1 0 × × 0

Remember that to derive the combinational next-state logic equation and circuit, we are only 

concerned with when the next state, Qnext, is a 1, therefore, it is not necessary to enumerate all 

possible input combinations for the truth table.

From the next-state truth table, we get the following next-state equation for the next-state logic 

circuit.

D = Qnext = Q’MV + Q’MD + QM
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The output equation for the output logic circuit is simply

siren = Q

Referring to the FSM template shown in Figure 9, we can now connect the three components 

(next-state logic, state memory and output logic) together resulting in the following FSM circuit 

for the car security system.

Output
Logic

Clk

D Q

V

Clock

D

Next-state
Logic

State
Memory

siren

M

Implement this version of the car security system circuit. Connect the master switch M to SW0. 

Connect the door switch D and the vibration switch V to the two push buttons PB0 and PB1. Con-

nect the siren output at Q to LED0. Connect the Clock signal to the clock generator on the trainer, 

and set the clock speed to 20 Hz. On the trainer, it is not necessary to connect anything to the en-

able signal of the flip-flop because it is enabled by default, and we want the D flip-flop to always 

be enabled. Verify that the circuit operates as described.
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4.10.	 Lab 10: Rotating Lights Controller

Purpose

In this lab you will learn how to design dedicated standalone controllers. You will design and 

implement a FSM controller circuit for making the LED lights rotate in a fixed pattern. You will imple-

ment the circuit and verify its operations.

Introduction

To learn how to design finite state machines, we will design and implement a simple but interest-

ing controller that will make the eight LED lights rotate in a fixed pattern. The controller will start in 

state S0. In state S0, it will turn on only the two red LEDs and then go to state S1. In state S1, it will 

turn on only the two yellow LEDs and then go to state S2. In state S2, it will turn on only the two 

green LEDs and then go to state S3. In state S3, it will turn on only the two blue LEDs and then go 

back to state S0. And the cycle repeats, thus causing the lights to rotate. The controller also has one 

input signal called Stop. Normally Stop is de-asserted (disabled) and the controller continuously cycles 

through the four states making the lights rotate, but when Stop is asserted (enabled), the controller 

will stop at the current state and will not move to the next state until Stop is de-asserted.

To visualize the operation of our controller, we will draw a state diagram to precisely describe the 

operation of our finite state machine. A state diagram is just a graph with circles (known as nodes) 

and edges connecting the nodes. You create one node for every state that you have for the FSM, and 

these nodes are labeled with their state name. For our rotating lights controller, we have determined 

that we needed four states, therefore, we start by drawing four nodes and labeling them S0, S1, S2 

and S3 as shown in Figure 24 (a).

S0 S1

S2S3

(a)

S0

S1

(b)

S2 S3

Stop=1

Stop=0

(c)

S2S3

S0 S1

(d)

S2S3

S0 S1

Stop=1

Stop=1 Stop=1

Stop=1

Stop=0

Stop=0

Stop=0Stop=0

(e)

Figure 24: State diagrams: (a) starting out with just the four nodes; (b) with an unconditional 
directed edge; (c) with two conditional outgoing edges; (d) cycling through four states; (e) with the 
conditional Stop signal added to the edges.
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For every state transition, there is a directed edge (i.e., a line with an arrow pointing in the direc-

tion of the transition) connecting from the originating state and going to the ending state. In other 

words, the directed edge originates from the node for the current state that the FSM is transitioning 

from and goes to the node for the next state that the FSM is transitioning to. These edges may or 

may not have labels on them depending on whether the transition is dependent on the value of an 

input signal or not. Transitions that are not dependent on any input signals will not have a label. In 

this case, only one edge can originate from that node as shown in Figure 24 (b). In Figure 24 (b), the 

FSM will transition from state S0 to state S1 unconditionally in the next clock cycle.

Transitions that are dependent on an input signal will have a label on the edge. So for each state, 

there will be two outgoing edges for each input signal that the transition is dependent on. These 

two edges will have the input signal condition labeled on them: one edge with the label for when 

the condition is true, and the other edge with the label for when the condition is false as shown in 

Figure 24 (c). In Figure 24 (c), the edge going from S2 to S3 has the label Stop=0 which means that 

the FSM will transition from state S2 to state S3 if the input signal Stop is a 0. The edge going from S2 

back to itself has the label Stop=1 which means that the FSM will stay in the same state if the input 

signal Stop is a 1.

If there is more than one input signal, then all possible input conditions must be labeled on the 

outgoing edges from the state. You can have multiple conditions labeled on the same edge and/or 

you can have more than two outgoing edges from the same node. Just make sure that all possible 

input conditions are covered. The state diagram is deterministic because from any node, you should 

be able to determine precisely which node to go to next given any possible input conditions.

Continuing with our rotating lights controller, we will draw in four edges: one from S0 to S1, one 

from S1 to S2, one from S2 to S3, and one from S3 back to S0 as shown in Figure 24 (d). These edges, 

with no conditional labels on them, show that the FSM will continuously transition through these 

four states in that sequence.

Note however that in our specification of the controller, we have an input signal Stop which when 

asserted (i.e., is a 1), the FSM will stop at the current state. The FSM will move from one state to the 

next only when Stop is de-asserted (i.e., is a 0). This means that the edges are conditional edges de-

pending on the Stop signal and, therefore, must have a label on them to specify the condition of the 

input signal as to when that edge is to be traversed as shown in Figure 24 (e). Every state now has two 

outgoing edges: the edge that loops back to itself has the label Stop=1 and the edge that goes to the 

next state has the label Stop=0. So at any state when Stop is a 1 the FSM will remain in that state until 

Stop changes to a 0 and the FSM will move to the next state.

The last thing we need to do is to specify what output signals are to be generated from each state. 

We want to be able to turn on and off the four color LEDs, so we create four output signals with the 

names Red, Yellow, Green and Blue for them. To turn on that color LED, we simply set the correspond-

ing output signal to a 1; a 0 will turn that color LED off. In the specification, we said that in state S0 

we want to just turn on the two red LEDs and turn off all the others, so inside the node for S0 we add 

in the four actions, Red ¬ 1, Yellow ¬ 0, Green ¬ 0 and Blue ¬ 0, as shown in Figure 25. Similarly for 

state S1, we want to just turn on the two yellow LEDs and turn off all the others, so we have Yellow ¬ 



Chapter  4  Labs

www.globalspecialties.com47

1 and all the others assigning a 0. Continuing in this fashion we complete the state diagram by adding 

the appropriate actions for the remaining two states.

Stop=1 Stop=1

Stop=1Stop=1

Stop=0

Stop=0

Stop=0Stop=0

S0
Red ← 1 

Yellow ← 0 
Green ← 0 
Blue ← 0 

S1
Red ← 0 

Yellow ← 1 
Green ← 0 
Blue ← 0 

S2
Red ← 0 

Yellow ← 0 
Green ← 1 
Blue ← 0 

S3
Red ← 0 

Yellow ← 0 
Green ← 0 
Blue ← 1 

Figure 25: Complete state diagram for the rotating lights controller.

Having completed the state diagram, the next step in the FSM design process is to derive the next-

state truth table based on the state diagram. The next-state truth table shows only the transitioning 

of the FSM from one state to the next just like in the state diagram but represented in a table format. 

The one important difference, however, is that instead of using symbolic names for the states, it uses 

the actual encodings for the states. Remember that in a computer system, everything is represented 

with a bunch of 0’s and 1’s, so state names such as S0 and S1 are meaningless. What we need to do is 

to assign a unique bit string to represent each state. How you assign this unique bit string is more or 

less arbitrary as long as they are all unique. Of course some assignments will result in smaller circuits 

and some will result in larger circuits. However, optimizing the circuit is beyond the scope of this lab 3. 

For our rotating lights controller, we have four states. To represent four different things uniquely, we 

need at least two bits because two bits can have the four unique combinations 00, 01, 10 and 11. So 

for simplicity, we will simply use the encoding 00 to represent state S0, 01 to represent state S1, 10 to 

represent state S2, and 11 to represent state S3.

The next-state truth table for our rotating lights FSM is shown in Figure 26 4. Down the left column, 

we list all the state encodings with one row per state. This represents the current state that the FSM is 

in. For the remaining columns in the table, we will have one column for each input signal condition. 

For our rotating lights FSM, we have one input signal Stop and this signal can have either a 0 or a 1 

3	 For an in-depth discussion on optimizing sequential circuits, refer to the book “Digital Logic 

and Microprocessor Design with VHDL” by E. Hwang.
4	 The format for this next-state truth table is slightly different from the next-state truth tables 

from Lab 9 and Section 3.4. Nevertheless, you should see that both formats are representing the 

same information.
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value, so our next-state table has two more columns: one for Stop=0 and the second for Stop=1. So 

the row label specifies the current state that the FSM is in, the column label specifies the input signal 

condition (as on the outgoing edges in the state diagram), and the table entry at the intersection of 

that row and column specifies the next state to go to. Filling in the entries in the table simply involves 

transferring the information from the state diagram to the appropriate cell in the table. For example, 

for row 00 (i.e., current state is 00) and column Stop=0, the next state that the FSM goes to is 01, and 

on the same row when Stop=1, the FSM will remain in the current state 00. You should now be able 

to complete the rest of the next-state truth table as shown in Figure 26.

Current 
State

Q1Q0

Next State

D1D0

Stop=0 Stop=1

00 01 00

01 10 01

10 11 10

11 00 11

Figure 26: Next-state truth table for the rotating lights FSM.

In addition to the next-state truth table, we also need to derive the output truth table. The output 

truth table records the output signal information from the state diagram. Again as in the next-state 

table, we list the state encodings for the current state down the left column of the table as shown in 

Figure 27. Then we add one column for each output signal, thus, for our example, we will have four 

more columns for the four output signals Red, Yellow, Green and Blue. Recall that in any given state, 

we want to turn on or off the output signals. So the entries in the table specify whether that signal 

should be on or off in that state (row). Again, all the information is already given in the state diagram 

so you just have to transfer that information into the table as shown in Figure 27.

Current State
Q1Q0

Output Signals

Red Yellow Green Blue

00 1 0 0 0
01 0 1 0 0
10 0 0 1 0
11 0 0 0 1

Figure 27: Output table for the rotating lights FSM.

Since the next-state table and the output table are just truth tables for combinational circuits, 

therefore, you should be able to derive the combinational circuit for them. There is, however, one ad-

ditional point that requires clarification, and that is how the FSM remembers its current state, which, 

in our example, is represented by the two-bit state encoding. The answer is to use one D flip-flop to 

store one bit of the encoding, so for a two-bit state encoding, we need to use two D flip-flops. The 

current state that the FSM is in is just the current content stored in the D flip-flops, which, as you 

recalled, can be read from the Q output of the flip-flop. This is the reason why in addition to the 
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“Current State” label for both the next-state and output tables, there is also the label Q1Q0 to denote 

that the right-side bit in the encoding is stored in flip-flop 0 and the left-side bit in the encoding is 

stored in flip-flop 1.

Notice also that in the next-state table in Figure 26, the “Next State” label also has the label D1D0. 

This, as you may guess, is the D input of the flip-flop since the value at the D input will be stored 

into the flip-flop at the next clock cycle. And the new value at the D input will be available at the Q 

output as the next state of the FSM in the next clock cycle. Again, just like the two bits for Q1Q0, the 

right-side bit in the encoding is the D input to flip-flop 0 and the left-side bit in the encoding is the 

D input to flip-flop 1.

Now, we are ready to derive the next-state combinational circuit equations based on the next-

state table, and the output combinational circuit equations based on the output table. There are 

two next-state equations, one for D1 and one for D0, and both of them are dependent on the three 

variables Q1, Q0 and Stop. For the output equations, there are four of them, Red, Yellow, Green and 

Blue, and they are dependent on only the two variables Q1 and Q0.

Remember that in deriving combinational equations and circuits from a truth table, we only take 

the cases where the value is a 1. So for D0 (i.e., the right-hand side bit in the two-bit bit string), there 

are four 1’s, two in the Stop=0 column and two in the Stop=1 column. For the first 1 in the top left 

corner cell, the values of the three variables are Q1 = 0 and Q0 = 0 and Stop = 0. For the equation, this 

translates to the AND term Q1’Q0’Stop’ where the three variables are ANDed together. We negate 

(NOT) the variable denoted by using the prime symbol when the value of the variable is equal to zero. 

The second 1 in the same column is when the values of the three variables are Q1 = 1, Q0 = 0 and Stop 

= 0, and this translates to the AND term Q1Q0’Stop’. The third 1 in the next column will have the term 

Q1’Q0Stop, and finally, the last one will have the term Q1Q0Stop. ORing these four terms together 

produces the following equation for D0:

D0 = Q1’Q0’Stop’ + Q1Q0’Stop’ + Q1’Q0Stop + Q1Q0Stop
The circuit for D0 based on this equation is shown in Figure 28 (a).

For D1 (i.e., the left-hand side bit in the two-bit bit string), there are also four 1’s. Repeating the 

same process as before, we get the following equation for D1:

D1 = Q1’Q0Stop’ + Q1Q0’Stop’ + Q1Q0’Stop + Q1Q0Stop
The circuit for D1 based on this equation is shown in Figure 28 (b).

For the four output signals, we get the following four equations from the output table:

Red = Q1’Q0’ Green = Q1Q0’

Yellow = Q1’Q0 Blue = Q1Q0

The circuit for these four equations is shown in Figure 28 (c).
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Stop

D0

Q'0
Q0

Q'1
Q1

(a)

Stop

D1

Q'0
Q0

Q'1
Q1

(b)

Q'0
Q0

Q'1
Q1

Blue

Green

Yellow

Red

(c)

Figure 28: Next-state logic and output logic circuits: (a) next-state circuit for D0; (b) next-state 
circuit for D1; (c) output logic circuits for the four output signals Red, Yellow, Green and Blue.

The last and final step in the construction of the FSM is to actually come up with the circuit based 

on these six equations. Using the block diagram for a FSM in Figure 9 as a guide, the next-state logic 

circuit will consists of the two D equations, the state memory will consists of two D flip-flops, and 

the output logic circuit will consists of the four output equations. The complete rotating lights FSM 

circuit is shown in Figure 29. The next-state logic circuit for D0 is connected to the D input of flip-flop 

0, and the next-state logic circuit for D1 is connected to the D input of flip-flop 1. Noticed that in the 

D1 next-state circuit, the connections for the second and last AND gates are the same as for the D0 

circuit, hence we can optimize the circuit a little by reusing the two AND gates from the D0 circuit. The 

four signals Q1, Q1’, Q0 and Q0’ come directly from the two flip-flops. The two clear signals from the 

two flip-flops are connected in common, and renamed as Reset because when this signal is asserted, 

the flip-flops will immediately clear to zero and so the FSM will start from state S0 (00). The two clock 

signals are also connected together to a common clock source.

Clock

D0

Q'0

Q0

Clear

Stop

Clock
Reset

Clock

D1

Q'1

Q1

Clear

Red

Yellow

Green

Blue

3

4

6

5

7

8

7

5

8

9

10

11

Figure 29: The complete FSM circuit for the rotating lights controller.
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Experiments - Lab 10

1.	 Implement the rotating lights FSM circuit shown in Figure 29. Use the two built-in D flip-flops 

on the trainer for the state memory. We want the FSM to change state at the active clock edge of 

every clock cycle hence, it is not necessary to require the use of the enable signal for the D flip-flop 

because the enable signal allows you to disable the flip-flop, but we want the flip-flop to always 

be enabled. On the trainer, it is not necessary to connect anything to the enable signal of the flip-

flop because it is enabled by default. Connect the Reset signal to push button PB0, and connect 

the Stop signal to push button PB1. Connect the Clock signal to the clock generator on the trainer, 

and set the clock speed to 1 Hz. Connect the four output signals to the corresponding color LEDs. 

You may want to connect the output signal to both LEDs with the same color. Have fun watching 

the lights rotate! Press the Stop key (PB1) to stop the lights.

2.	 What happens to the lights when you set the clock speed to 20 Hz? Why?

3.	 For the two next-state equations for D0 and D1, we can simplify them using Boolean algebra 

as follows:

D0 = Q1’Q0’Stop’ + Q1Q0’Stop’ + Q1’Q            Stop + Q1Q0Stop

	 = Q0’Stop’ (Q1’ + Q1) + Q0Stop(Q1’ + Q1)

	 = Q0’Stop’ + Q0Stop

	 = Q0  Stop

D1 = Q1’Q0Stop’ + Q1Q0’Stop’ + Q1Q0’Stop + Q1Q0Stop

	 = Stop’ (Q1’Q0 + Q1Q0’) + Q1Stop(Q0’ + Q0)

	 = Stop’ (Q1 ⊕ Q0) + Q1Stop
Modify the original next-state circuit to use these two simplified equations instead. Test and make 

sure that the lights rotate exactly like before.

4.	 Design and implement a left-right lights controller FSM circuit. This FSM circuit is similar to the 

rotating lights FSM except that instead of the lights going around in a circle, the lights move from 

left to right and then back from right to left.
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4.11.	 Lab 11: Jeopardy® Contestant Response Controller

Purpose

In this lab you will learn how to design dedicated standalone controllers. You will design and 

implement a FSM controller circuit similar to the Jeopardy® contestant response system. You will 

implement the circuit and verify its operations.

Introduction

This lab provides another example for designing a stand-alone controller circuit, and that is for a 

Jeopardy® contestant response system. Probably you have watched the popular Jeopardy® TV quiz 

show where three contestants try to be the first to answer questions. Each contestant has a push but-

ton. Whoever presses the button first will turn on a buzzer and/or flashing lights and at the same time 

disables the other two buttons from further activation. This way, the moderator will know exactly 

who pressed the button first, and the question is given to that person to be answered.

The first thing to do in designing any controller system is to determine the inputs and outputs 

for the system. In the contestant response system, the inputs are three push buttons, one for each 

contestant, and a reset switch for the moderator. For the outputs, we will just have a light for each 

contestant; when a button is pressed, the corresponding light will lit. Optionally, you can add a buzz-

er to the same output signal so that when the light is lit, the buzzer will also sound. Knowing how 

the system works, we can describe the operation of the system precisely by using a state diagram as 

shown in Figure 30.

S0
Yellow ← 0 
Green ← 0 
Blue ← 0 

S1
Yellow ← 1 
Green ← 0 
Blue ← 0 

S2
Yellow ← 0 
Green ← 1 
Blue ← 0 

S3
Yellow ← 0 
Green ← 0 
Blue ← 1 

PB0=0
PB1=0
PB2=0

Reset

PB0=1
PB1=0
PB2=0PB0=0

PB1=1
PB2=0

PB0=0
PB1=0
PB2=1

Figure 30: State diagram for the Jeopardy® contestant response system.

Initially and whenever the Reset button is pressed, the FSM will return to state S0. This can be ac-

complished simply by connecting the Reset button to the asynchronous clear signal of the flip-flops 
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to zero the state memory. This way, the Reset signal does not have to be considered as an input signal 

in the FSM design, i.e., not a label on any edges in the diagram. The system starts out in state S0 and 

waits for a button press, so in the diagram, there is an edge from state S0 that goes back to S0 when 

there are no button presses. When there is a button pressed, the FSM will go to one of the three 

states depending on which button was pressed. For example, if PB0 is pressed then the FSM will go 

to state S1. In each of the three states the FSM will turn on the corresponding light and turn off the 

other two lights. In state S1 the FSM will turn on the Yellow LED and turn off the other two LEDs. In 

state S2 it will turn on the Green LED and in state S3 it will turn on the Blue LED. In state S0, all of the 

LEDs will be off. Furthermore, after a button has been pressed and the FSM has gone to one of the 

corresponding three states S1, S2 or S3, the FSM will stay in that state indefinitely until the moderator 

resets the system by pressing the Reset button. Hence the unconditional edges from each of the three 

states that loop back to itself. 

From this state diagram we can now derive the next-state truth table as shown in Figure 31. Hav-

ing four states, we again use a 2-bit state encoding where 00 is the encoding for state S0, 01 for S1, 

10 for S2, and 11 for S3.

When the FSM is in state S0, we are waiting for only one button press. It is safe to assume that even 

when two or more contestants seem to press the button at the same time, if you “zoom in” and look 

at the time line in the microseconds scale, one button will always have been pressed before another. 

Therefore, we should never see the combinations where two or more buttons are pressed at exactly 

the same time. If this very unlikely event happens, then we will just ignore it and remain in state S0. 

With this assumption, we have eliminated all of the combinations where multiple buttons are pressed 

at the same time, thus we are left with only the four combinations PB2PB1PB0 = 000, 001, 010 and 

100, i.e., no button pressed, only PB0 is pressed, only PB1 is pressed, and only PB2 is pressed.

In state S0, the FSM will go to one of the other three states only if one of the three button-press 

combinations (001, 010, or 100) occurs. For all other combinations, the FSM will remain in state S0. 

When the FSM is in state S1, S2 or S3, it will remain in that state no matter what happens further with 

the three contestant push buttons. The moderator will have to press the reset key to bring the FSM 

back to state S0.

Current 
State
Q1Q0

Next State
D1D0

PB2PB1PB0  →  000+all other combinations 001 010 100

00 = S0 00 01 10 11
01 = S1 01 01 01 01
10 = S2 10 10 10 10
11 = S3 11 11 11 11

Figure 31: Next-state truth table for the Jeopardy® contestant response system.

In deriving the two next-state equations, one for D0 and one for D1, we look at the 1 bits in the 

2-bit bit string in the table entries. Again, the right-most bit is for D0 and the left-most bit is for D1. 

May be you may find it easier to visualize the bits for D0 and D1 if you separate the next-state table 
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from Figure 31 into two separate tables, one for D0 and one for D1 as shown next.

Current 
State
Q1Q0

Next State
D0

000 001 010 100

00 = S0 0 1 0 1
01 = S1 1 1 1 1
10 = S2 0 0 0 0
11 = S3 1 1 1 1

Current 
State
Q1Q0

Next State
D1

000 001 010 100

00 = S0 0 0 1 1
01 = S1 0 0 0 0
10 = S2 1 1 1 1
11 = S3 1 1 1 1

For the D0 equation, there are two 1 bits in the first two rows (i.e., when Q1 is a 0) and under the 

column 001. These two ones can be covered by the AND term Q1’ PB2’ PB1’ PB0. The two 1 bits in the 

same first two rows but under the column 100 can be covered by the AND term Q1’ PB2PB1’ PB0’. 

The four 1 bits in the second row (i.e., when Q1Q0=01) and the four 1 bits in the last row (i.e., when 

Q1Q0=11) can all be covered by the AND term Q0. In other words, it doesn’t matter what the other 

input values are, as long as Q0 is a 1, we want D0 to also be a 1. Since these three AND terms cover all 

of the 1 bits for D0, therefore, the equation for D0 is obtained by ORing these three AND terms togeth    

er as follows.

D0 = Q1’ PB2’ PB1’ PB0 + Q1’ PB2PB1’ PB0’ + Q0

Proceeding in a similar manner, we get the following equation for D1.

D1 = Q0’ PB2’ PB1 PB0’ + Q0’ PB2PB1’ PB0’ + Q1

The output truth table is shown in Figure 32. The three color LEDs used for the three contestants 

are driven by the three output signals, Yellow, Green and Blue. In state S0, all of them are turned off 

with a 0. In state S1, only the Yellow output signal is set to a 1 to turn on the yellow LED. In state S2, 

only Green is set to a 1, and in state S3, only Blue is set to a 1.

Current State
Q1Q0

Output Signals

Yellow Green Blue

00 = S0 0 0 0
01 = S1 1 0 0
10 = S2 0 1 0
11 = S3 0 0 1

Figure 32: Output truth table for the Jeopardy® contestant response system.

The three output equations as derived from the output truth table are shown next:

Yellow = Q1’Q0

Green = Q1Q0’

Blue = Q1Q0

The complete Jeopardy® contestant response controller circuit is shown in Figure 33.
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Figure 33: The complete FSM circuit for the Jeopardy® contestant response system.

Experiments - Lab 11

1.	 Implement the Jeopardy® contestant response FSM circuit shown Figure 33. Use the two 

built-in D flip-flops on the trainer. Connect the Reset signal to toggle switch SW0, and connect the 

three contestant push buttons to PB0, PB1 and PB2. Connect the Clock signal to the clock genera-

tor on the trainer, and set the clock speed to 20 Hz. Connect the three output signals to the cor-

responding color LEDs. Have fun playing Jeopardy! Press the Reset key (SW0) after each round to 

reset the lights.

2.	 What happens to the response of the contestant push buttons when you set the clock speed 

to 1 Hz? Why?
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4.12.	 Lab 12: Traffic Light Controller

Purpose

In this lab you will learn how to design dedicated standalone controllers. You will design and 

implement a FSM controller circuit for controlling a simple traffic light system at an intersection. You 

will implement the circuit and verify its operations.

Introduction

This lab provides a slightly more complex example for designing a stand-alone controller circuit, 

and that is for a simple traffic light system at an intersection. For our traffic light system, we will have 

two sets of lights where each set consists of the red, yellow and green lights. The sequence for the 

lights to turn on in both sets is shown next.

	

Set 1 Set 2 Time Delay State

yellow red 1 second S0

red green 3 seconds S1

red yellow 1 second S2

green red 3 seconds S3

yellow red 1 second S0

etc. etc. etc. etc.

There is a short delay for each light until it changes to the next light. The green light remains on 

for 3 seconds before switching to the yellow light, and the yellow light remains on for one second 

before switching to the red light.

The system also has two crosswalk push buttons (matching the two sets of lights) for people to 

cross the street. When a button is pressed, we want that matching set of lights to turn red immedi-

ately if it is not already red, i.e., if that set of lights is at green, then we want it to immediately go 

to yellow without completing the 3 seconds delay. If it is already at red then it should remain at red. 

It will remain at red (while the other set is at green) for 3 seconds for the people to cross the street, 

after which the normal cycle repeats.

The state diagram for our traffic light controller is shown in Figure 34.

As you may have noticed in the state diagram, there is no reference to any timing except that on 

every active clock edge, the FSM will transition to the next state. If the clock frequency is very high, 

then the FSM will cycle through the states so fast that you wouldn’t see the lights pausing at each 

sequence. In the description, there are two situations where we want the lights to pause for 1 second, 

and this can be accomplished by using a 1 Hz clock frequency, because after 1 second, the FSM will 

move on to the next state and so the lights will be changed after 1 second. However, for the situations 

where we want the lights to pause for 3 seconds, we can either designate three states for keeping the 

same lights on for three seconds, or have only one state but use a counter to count for three times for 



Sequential Logic Design

Global Specialties 58

the FSM to stay in that one state before moving on to a new state. In our design, we have used the 

latter solution. A 2-bit binary counter is used to count from 0 to 3. After the count of three, the coun-

ter overflows, and the CountOverflow bit is used to signify that it is time to move on to a new state.

On reset, the FSM will start in state S0 with Yellow1 and Red2 turned on, and the counter is reset to 

zero by setting ClearCount to a 1. After 1 second, the FSM transitions to state S1 turning on Red1 and 

Green2. At this point, the counter will increment at a rate of 1 second. The FSM will remain in state S1 

until either the counter overflows by asserting the CountOverflow bit, which means that the time is 

up, or a pedestrian has pushed PB1 and so we want the light to change immediately.

States S2 and S3 are mirror images of states S0 and S1 for the other set of lights.

CountOverflow=1
or PB1=1

S0
ClearCount←1 

Yellow1←1 
Red2←1 

S1

Red1←1 
Green2←1 

S2
ClearCount←1 

Red1←1 
Yellow2←1 

S3
Green1←1 
Red2←1 

CountOverflow=1
or PB0=1

PB0=1 then 
ClearCount←1 

PB1=1 then 
ClearCount←1 

Reset

Figure 34: State diagram for the traffic light controller.

The next-state table as derived from the state diagram is shown in Figure 35.

Current 
State
Q1Q0

Next State
D1D0

    PB1,PB0,CountOverflow →      000 001 010 011 100 101 110 111

00 = S0 01 01 01 01 01 01 01 01
01 = S1 01 10 01 01 10 10 01 01
10 = S2 11 11 11 11 11 11 11 11
11 = S3 11 00 00 00 11 11 11 11

Figure 35: Next-state table for the traffic light controller. 
Some of the next-state entries in the next-state table can have different values, and it is up to you, 

the designer, to decide on what you want. For instance, from state S1, if PB0 and PB1 are pressed at 

the same time, should the FSM stay in S1 or move on to state S2? In the table, this is the row labeled 
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S1 and the column labeled 110. The entry in the table is 01 which is to stay in state S1, thus giving 

PB0 priority. There is no reason why you can’t give PB1 priority, and thus moving to state S2 instead.

The two next-state equations as derived from the next-state table are shown next:

D0 = Q0’ + Q1’ PB0 + Q1 PB1 + Q0 PB1’ PB0’ CountOverflow’
D1 = Q1 Q0’ + Q1 PB1 + Q1 PB0’ CountOverflow’ + Q0 PB1 PB0’ + Q1’ Q0 PB0’ CountOverflow

The output table is shown in Figure 36. There are two sets of Red, Yellow and Green signals for 

turning on and off the corresponding LEDs, and a ClearCount signal to zero the 2-bit counter. Notice 

that for the ClearCount signal, it is set to a 1 not just inside a state, but on an edge, i.e., it is depen-

dent on both the current state and on an input signal. For example, in state S1, ClearCount is set to a 

1 only when PB0 is also a 1. 

Current State
Q1Q0

Output Signals

Red1 Yellow1 Green1 Red2 Yellow2 Green2 ClearCount

00 = S0 0 1 0 1 0 0 1
01 = S1 1 0 0 0 0 1 1 if PB0=1
10 = S2 1 0 0 0 1 0 1
11 = S3 0 0 1 1 0 0 1 if PB1=1

Figure 36: Output table for the traffic light controller.

The seven output equations as derived from the output table are shown next:

Red1 = Q1 ⊕ Q0
Yellow1 = Q1’ Q0’

Green1 = Q1 Q0
Red2 = Q1  Q0
Yellow2 = Q1 Q0’

Green2 = Q1’ Q0
ClearCount = Q0’ + Q1’ Q0 PB0 + Q1 Q0 PB1

As mentioned previously, a 2-bit binary up counter is needed to support the count delay. The 

ClearCount signal will assert the Clear input signal to zero the counter, and the CountOverflow out-

put signal is connected to the counter’s Overflow output bit.

The complete traffic light controller circuit is shown in Figure 37.
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Figure 37: The complete traffic light controller circuit.

Experiments - Lab 12

The following gives step by step instructions to implement the traffic light controller circuit as 

shown in Figure 37. For ease of debugging, you should use the same component/gate number as 

given in the circuit diagram.

1.	 Connect the 2-bit binary up counter circuit as shown next. The operation of the counter cir-

cuit was discussed in Lab 8. Use the two built-in D flip-flops 1 and 2 on the trainer for the counter 

memory.

Clk

D Q

Clear

Clk

D Q

Clear

VccClock
Clear

Overflow 3

4

21

3

4

Connect the two Clock signals from both flip-flops to the clock generator on the trainer. The Over-

flow output bit will be connected to the CountOverflow input signal to the FSM. The two Clear 

signals to the flip-flops are connected in common, and they will be connected to the ClearCount 

output signal from the FSM.
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2.	 Because of the limited connection points available on the trainer, we need to add some more 

connection points for the state memory. Connect the state memory as shown next. Use the two 

built-in D flip-flops 3 and 4 on the trainer for the state memory. Flip-flop 3 is for D1, and flip-flop 

4 is for D0. 

Clock

D0

Q'0

Q0

Clear

Clock

D1

Q'1

Q1

Clear

4

3 9

10

11

12

Clock
Reset
SW0

Q1

Q1

The Q and Q’ outputs of the flip-flops on the trainer have only four wire connection points, but 

this controller circuit requires more than four connections to them. To overcome this restriction 

on the trainer, you can either connect the Q and Q’ outputs to the breadboard to get more con-
nection points, or, as shown in the diagram above, connect the Q and Q’ outputs to NOT gates 9 
through 12. The outputs of these NOT gates give you an additional six connection points each, 
which is enough for the circuit. In the diagram, there are two vertical connection lines for each 
flip-flop output signal. The two vertical lines for output signal Q1 are shown: one is directly con-
nected to Q1 from flip-flop 3, and the second is connected to Q1’ through NOT gate 10 (remem-
ber, inverting Q1’ will give you Q1).

Connect the two Clear signals from both flip-flops to slider switch SW0. This is the reset signal for 
the controller. Connect the two Clock signals from both flip-flops to the clock generator on the 
trainer, and set the clock speed to 1 Hz.

The complete traffic light controller circuit with the modified state memory connections is shown 

in Figure 38.

3.	 Connect the output circuit as shown in Figure 38. LED0, LED1 and LED2 are the red, yellow 
and green LEDs for one set of the traffic light, and LED5, LED6 and LED7 are the LEDs for the 
second set. Remember to use the connections from the output of the NOT gates from the state 
memory. The ClearCount output signal is connected to the Clear signal of the counter.

4.	 Connect the next-state circuit as shown in Figure 38. Use as much as possible the Q and Q’ 
connection points from the two state memory flip-flops. If not enough, then use the connection 
points from the NOT gates from the state memory. PB0 and PB1 are the two crosswalk push but-
tons. The Overflow signal from the counter is connected to an extra NOT gate, again because 
more connection points are needed.
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You should see the traffic lights sequence through according to our state diagram. Make sure that 

the two crosswalk buttons work according to our design.

Clock
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Q'0

Q0

Clear

PB0

Clock
Reset

Clock

D1

Q'1

Q1

Clear

Red1

PB1

Yellow1

Green1
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ClearCount

CountOverflow

8

6

5

4

3 3
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Set 2
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6

10
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LED6

9

10

11
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Figure 38: The complete traffic light controller circuit with modified state memory connections.
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