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Chapter 1

Combinational Logic Design Trainer
The Combinational Logic Design Trainer that you have contains all of the necessary tools for you to 

easily implement many combinational digital logic circuits. Combinational logic circuits are one major 

type of digital circuits found inside microprocessors. The layout of the trainer is shown in Figure 1.

Figure 1: Combinational Logic Design Trainer layout. All of the logic gates and I / O’s are 
pre-mounted with wire connection points connected to them.

The following is a list of all of the components on the trainer:

>> Twelve NOT gates

>> Eight 4-input AND gates

>> Twelve 2-input AND gates

>> Eight 4-input OR gates

>> Eight 2-input OR gates

>> Twelve 2-input XOR gates

>> Eight red LEDs
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>> Two 7-segment LED displays

>> Eight toggle switches

>> One push button switch

>> VCC and GND connection points

>> General bread board area with 270 tie points

>> Hook-up wires of various lengths

The eight LEDs and the LED segments in the 7-segment displays are active high, which means that 

a logic 1 signal will turn the light on, and a logic 0 signal will turn the light off. The push button PB0 

is also active high, so pressing the button will produce a logic 1 signal. All of the eight switches are 

configured so that when the switch is in the up position the output is a logic 1, and when the switch 

is in the down position the output is a logic 0.

You can also connect a wire to one of the VCC connection points to directly get a logic 1 signal. 

Similarly, connecting a wire to one of the GND connection points will get a logic 0 signal.

All of the logic gates and I/O’s are pre-mounted for easy wiring of a circuit. All logic gate inputs 

are connected to one wire connection point, and all logic gate outputs have multiple wire connec-

tion points. To connect from the output of a logic gate to the input of another logic gate, simply use 

a hook-up wire to connect between the two wire connection points. For example, push button PB0 

has six common wire connection points, so to use PB0 you can connect a hook-up wire to any one 

of these six connection points. Connect the other end of the hook-up wire to a connection point for 

LED0. When you press the push button, the LED should turn on. Try this simple connection now to 

see that it works.

The logic gates on the trainer are also numbered for easy reference for when connecting a circuit 

up. For instance, the eight 4-input AND gates are numbered from 1 to 8. There are also eight 4-input 

OR gates, and they are also numbered from 1 to 8. So be careful when a circuit diagram says gate 

number 1 that you know which type of gate it is referring to, i.e., whether it is the 4-input AND gate, 

the 4-input OR gate or even one of the other gates. For example, the following circuit diagram uses 

the number-1 4-input AND gate, the number-2 2-input AND gate and the number-6 2-input OR gate. 

In this courseware, we will use the notation 4-AND#1, 2-AND#2 and 2-OR#6 to refer to these three 

gates respectively.

1
6

2

The general breadboard area allows you to connect other components that are not available on 

the trainer together with your circuit. The breadboard consists of many holes for you to connect 

hook-up wires and integrated circuit (IC) chips. All of the holes are already connected together in 

groups. This way, you can connect two wires together (or connect a wire to an IC pin) simply by plug-

ging the two wires into two holes that are already connected together. The layout of the breadboard 

is shown in Figure 2A.
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Section 1

Section 2

Section 3

Section 4

Figure 2A: Breadboard layout. The holes in section 1 are connected horizontally. The holes in 
section 2 are connected vertically. The holes in section 3 are connected vertically. The holes in 
section 4 are connected horizontally. Holes in any two different sections are not connected.

There are four general sections on the breadboard. All of the holes in section 1 are connected in 

common horizontally. The holes in this section are usually connected to VCC to provide power or the 

logic 1 signal to your circuit on the breadboard. Like section 1, all of the holes in section 4 are also 

connected in common horizontally. The holes in this section are usually connected to GND to provide 

a common ground or the logic 0 signal to your circuit. The holes in section 2 are connected vertically, 

so the five holes in each column are connected in common, but the vertical columns are not connected 

together. The holes in section 3 are also connected vertically like those in section 2, so the five holes 

in each column are connected in common, but the vertical columns between section 2 and section 3 

are not connected together. Finally, holes in any two different sections are not connected together.

In the case where you might need more connection points for a component on the trainer, you can 

use the breadboard to give you extra connection points. Typically, you use a breadboard to connect 

wires to an IC chip. A standard dual-in-line (DIP) IC chip would be plugged into the breadboard with 

one row of pins in section 2 and the second row of pins in section 3.

Let us now test out the trainer. The three thick lines in Figure 2B show three wires connected from 

the two switches, SW6 and SW7, to the inputs of the number-12. a 2-input AND gate, and the output 

of this AND gate is connected to LED6. In a schematic circuit drawing, this circuit would be shown as 

follows:
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Figure 2B: Combinational Logic Design Trainer with three jumper wires connecting AND gate to 
Switches and LED. 

Using three pieces of hook-up wires, make these same connections now on your trainer. Slide the 

two switches up and down and see how the LED turns on and off. At this point you may not under-

stand why the LED turns on and off the way it does. Just keep reading and you will find out very 

quickly, and you will be well on your way to designing your very own microprocessors.
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Chapter 2

Microprocessors

2.1.	 Introduction to Microprocessors
Whether you like it or not, microprocessors (also known as microcontrollers) control many aspects 

of our lives today – either directly or indirectly. In the morning, a microcontroller inside your alarm 

clock wakes you up, and another microcontroller adjusts the temperature in your coffee pot and 

alerts you when your coffee is ready. When you turn on the TV for the morning news, it is a microcon-

troller that controls the operation of the TV such as adjusting the volume and changing the channel. 

A microcontroller opens your garage door, and another inside your car releases your anti-lock break 

when you drive your car out. At the traffic light, a microcontroller senses the flow of traffic and turns 

on (hopefully) the green light for you when you reach the intersection. You stop by a gas station and 

a microcontroller reads and accepts your credit card, and let you pump your gas. When you walk up 

to your office building, a sensor senses your presence and informs a microcontroller to open the glass 

door for you. You press button eight inside the elevator, and a microprocessor controls the elevator to 

take you up to the 8th floor. During lunch break, you stop by a gift shop to buy a musical birthday card 

for a friend and find out that the birthday song is being generated by a microprocessor that looks like 

a dried-up pressed-down piece of gum inside the card. I can continue on with this list of things that 

are controlled by microprocessors, but I think you got the idea. Oh, one last example, do you know 

that it is also a microprocessor that is at the heart of your personal computer, whether it is a PC or a 

Mac? That’s right the Intel Duo Core® CPU inside a PC is a general-purpose microprocessor.

So you see, microprocessors are at the heart of all “smart” devices, whether they be electronic de-

vices or otherwise, and their smartness comes as a direct result of the decisions and controls that the 

microprocessors make. In this three part award-winning series on microprocessor design training kits, 

you will learn how to design and actually implement real working custom microprocessors. Designing 

and building microprocessors may sound very complicated, but don’t let that scare you, because it is 

not really all that difficult to understand the basic principles of how microprocessors are designed. 

After you have learned the materials presented in these labs, you will have the basic knowledge 

of how microprocessors are designed, and be able to design and implement your very own custom 

microprocessors.

There are generally two types of microprocessors: general-purpose microprocessors and dedicated 

microprocessors. General-purpose microprocessors, such as the Intel Pentium® CPU, can perform dif-

ferent tasks under the control of software instructions. General-purpose microprocessors are used in 

all personal computers.

Dedicated microprocessors, also known as microcontrollers, on the other hand, are designed to 

perform just one specific task. So for example, inside your cell phone, there is a dedicated micropro-

cessor that controls its entire operation. The embedded microprocessor inside the cell phone does 

nothing else but controls the operation of the phone. Dedicated microprocessors are therefore usu-

ally much smaller, and not as complex as general-purpose microprocessors. Although the small dedi-
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cated microprocessors are not as powerful as the general-purpose microprocessors, they are being 

sold and used in a lot more places than the powerful general-purpose microprocessors that are used 

inside personal computers.

The electronic circuitry inside a microprocessor is called a digital logic circuit or just digital circuit, 

as opposed to an analog circuit. Digital circuits deal with just two discrete values, usually represented 

by either a 0 or a 1, whereas analog circuits deal with a continuous range of values. The main com-

ponents in an analog circuit usually consist of discrete resistors, capacitors, inductors, and transistors, 

whereas the main components in a digital circuit consist of the AND, OR and NOT logic gates. From 

these three basic types of logic gates, the most powerful computer can be made. Logic gates are built 

using transistors—the fundamental active component for all digital logic circuits. Transistors are just 

electronic binary switches that can be turned on and off. The two binary values, 1 and 0, are used to 

represent the on and off states of a transistor. So instead of having to deal with different voltages and 

currents as in analog circuits, digital circuits only deal with the two abstract values of 0 and 1. Hence, 

it is usually easier to design digital circuits than analog circuits.

Figure 3 (a) is a picture of a discrete transistor. Above the transistor is a shiny piece of raw silicon 

which is the main ingredient for making transistors. As you can see in the picture, the transistor has 

three connections: one for the signal input, one for the signal output, and one for turning on and 

off the transistor. Figure 3 (b) is a picture of hundreds of transistors inside an integrated circuit (IC) 

chip as viewed through an electron microscope. The right half of the picture is a magnification of the 

rectangle area in the left half. Each junction is a transistor.

	 	

	 (a)	 (b)

Figure 3:  Pictures of transistors: (a) a discrete transistor with a piece of silicon; (b) hundreds of 
transistors inside an IC chip as viewed through an electron microscope. The right half of the picture 
is a magnification of the rectangle area in the left half.

Figure 4 is a picture with several generations of integrated circuit chips. Going clockwise from the 

top-left corner is a lump of silicon which can be used to make many transistors; an Intel® 8085 micro-

processor with its top opened. The 8085 is an 8-bit general-purpose microprocessor with a maximum 

clock speed of around 10 MHz, and contains around 29,000 transistors; an Intel® 486 DX microproces-

sor. The 486 has a maximum clock speed of 100 MHz and contains around 1.2 million transistors; the 

2732 erasable-programmable-read-only-memory (EPROM) which has a non-volatile storage capacity 
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of 4,096 bytes. The 2732 contains around 32,000 transistors; the tip of a pen which contains no transis-

tor; the 7440 chip which has two 4-input NAND gates and contains 20 transistors; and finally a single 

discrete transistor.

Figure 4: Picture of various integrated circuit chips. Going clockwise from the top-left corner is a 
lump of silicon, an eight-bit Intel® 8085 microprocessor with its top opened, an Intel® 486 DX mi-
croprocessor, the 2732 erasable-programmable-read-only-memory (EPROM) with a capacity of 4,096 
bytes, the tip of a pen, the 7440 chip which contains two 4-input NAND gates, and a transistor.

Every digital circuit is categorized as either a combinational circuit or a sequential circuit. A micro-

processor circuit is composed of many different combinational circuits and many different sequential 

circuits. In part I of this three-part series on microprocessor design training courseware you will learn 

how to design combinational circuits. In part II you will learn how to design sequential circuits. And fi-

nally in part III you will learn how to design microprocessors by putting these different combinational 

and sequential circuits together to make a real working microprocessor.

2.2.	 Combinational and Sequential Circuit Analogy
A simple analogy of the difference between a combinational circuit and a sequential circuit is the 

combination lock that we are familiar with. There are actually two different types of combination 

locks as shown in Figure 5. For the lock in Figure 5 (a), you just turn the three number dials in any 

order you like to the correct number and the lock will open. For the lock in Figure 5 (b), you also have 

three numbers that you need to turn to, but you need to turn to these three numbers in the correct 

sequence. If you turn to these three numbers in the wrong sequence the lock will not open even if 

you have the numbers correct. The lock in (a) is like a combinational circuit where the order in which 

the inputs are entered into the circuit does not matter, whereas, a sequential circuit is like the lock in 

(b) where the sequence of the inputs does matter.
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	 (a)	 (b)

Figure 5: Two types of combination locks: (a) the order in which you enter the numbers does not 
matter; (b) the order in which you enter the numbers does matter.

So a combinational circuit is one where the output of the circuit is dependent only on the inputs 

to the circuit, but not dependent on the order in which these inputs are entered. One example of a 

combinational circuit is the adder circuit for adding two numbers. The adder takes two numbers for 

its inputs. With these two input numbers, it evaluates the sum of these two numbers and outputs the 

result. It doesn’t matter which input number you enter first as long as you enter both numbers and 

the adder will output the sum.

Examples of combinational circuits used inside a microprocessor circuit include adders, multiplex-

ers, decoders, arithmetic and logic unit (ALU), and comparators. In part I of this three-part series 

courseware you will learn about these and many other combinational circuits.
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Chapter 3

Digital Logic Circuits 

3.1.	Basic Logic Gates
All digital circuits are implemented with logic gates. The three fundamental logic gates are the 

AND gate, the OR gate and the NOT gate. Using these three types of logic gates, the most complex 

microprocessor circuit can be built. 

Logic gates are built from transistors—the fundamental active component for all digital logic cir-

cuits. Transistors are just binary switches that can be turned on and off. The two binary values, 1 and 

0, are used to represent the on and off states of a transistor; usually a 1 means “on” or having volt-

age, and a 0 means “off” or no voltage. In operation, a transistor is like your light switch on the wall 

where you can either turn it on or off. When you turn on the light switch, current flows through the 

switch and the light comes on. Physically, transistors are of course much smaller than your light switch.

3.1.1.	 AND, OR and NOT Gates

An analogy for the operation of the AND gate is like connecting two binary switches together in 

series as shown in Figure 6 (a). In the diagram, the signal flows from the input on the left-hand side 

to the output on the right-hand side through the two switches x and y. In order for a signal to travel 

from the input to the output, both switches have to be turned on (i.e., connected). If either one or 

both switches are turned off, then a signal would not be able to get from the input to the output.

switch x switch y

input output

(a)

switch x

outputinput switch y

(b)

Figure 6: Two possible connections of two binary switches: (a) in series; (b) in parallel. In both dia-
grams, the switches are in their “off” positions.

The OR gate, on the other hand, is like connecting two binary switches together in parallel as 

shown in Figure 6 (b). In order for a signal to travel from the input to the output, either one or both 

of the switches have to be turned on. A signal is prevented from getting from the input to the output 

only if both switches are turned off. Note however, that when both switches are turned on, the out-

put signal is not doubled, but is the same as having only one switch turned on.

Using the convention of a 1 meaning “on” and a 0 meaning “off”1, and assuming that the input 

1	This familiar convention is referred to as active-high. In practice, the active-low convention is 

sometimes used where a 1 means “off” and a 0 means “on”.
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has a 1, then the AND gate will output a 1 only when both switches are turned on (i.e., both switches 

are 1’s); otherwise the output will be a 0. Since we assume that the input is always a 1, therefore, we 

are only interested in the status of the two switches x and y, that is, whether they are a 1 (on) or a 0 

(off). 

For the OR gate, and having a 1 input, the output is a 1 when either one or both of its switches 

are turned on (i.e., either one or both of the switches is a 1); otherwise the output will be a 0. Again, 

we assume that the input is always a 1, and so we are again only interested in the status of the two 

switches, whether they are a 1 (on) or a 0 (off).

The operation of the NOT gate simply inverts the value at its input. So if the input is a 0, then the 

output will be a 1, and vice versa.

3.1.2.	 Truth Tables

We formally describe the operation of a logic gate or any combinational digital circuit with a truth 

table. A truth table is a two-dimensional table that lists all possible combinations of the circuit’s input 

values and their corresponding output values. The headings for the columns are labeled with the in-

put and output signal names, and there is one row for each combination of input values. The values 

in the output column(s) are deduced by analyzing the operation of the circuit for each combination 

of input values.

The truth table for the AND gate is shown in Figure 7 (a). In this truth table, the two columns la-

beled x and y are the input signal names, and they represent the status of the two binary switches x 

and y. The column labeled f is the output from the AND gate. Under the x and y columns, we list all 

possible combinations of the status of these two binary switches, again using the convention that a 1 

means that the switch is turned on and a 0 means that the switch is turned off. In the first row with 

both x and y being a 0, meaning that both switches are turned off, the output of the AND gate will 

be a 0, hence f for this row is a 0. Thus, having understood the operation of the AND gate using the 

binary switch analogy, we can deduce all of the output values for the AND gate. As you can see, f is a 

0 for all values of x and y except for when both of them are a 1, then f is a 1.

x y f

0 0 0
0 1 0
1 0 0

1 1 1

(a)	 (b)	 (c)

Figure 7: Truth tables for the: (a) AND gate; (b) OR gate; (c) NOT gate. In these truth tables, x and 
y are the inputs and f is the output.

The truth table for the OR gate is shown in Figure 7 (b). The binary switch analogy for the OR gate 

shows that the output is a 0 only when both of the switches are a 0 (off). Hence, f is a 0 only when 

both x and y are 0’s, otherwise, f is a 1.

x y f

0 0 0
0 1 1
1 0 1

1 1 1

x f

0 1
1 0
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The truth table for the NOT gate is shown in Figure 7 (c). Notice that the NOT gate only has one 

input x. When the input x is a 0 then the output f is a 1, and when x is a 1 then the output f is a 0.

3.1.3.	 Logic Symbols

When drawing digital circuit diagrams, also referred to as schematic diagrams, we use logic sym-

bols to represent these gates. The logic symbols for the AND, OR and NOT gates are shown in Figure 8. 

x and y are the inputs to these gates, and f is the output.

y

x
f

(a)

y

x
f

(b)

x f

(c)

Figure 8: Logic symbols for the: (a) AND gate; (b) OR gate; and (c) NOT gate. x and y are the inputs 
and f is the output.

3.1.4.	 NAND, NOR, XOR and XNOR Gates

As mentioned before, any digital circuit, no matter how complex they may be, can be built using 

these three types of basic gates. However, there are several other gates that are derived from the 

AND, OR and NOT gates that are also used frequently in digital circuits. They are the NAND gate, NOR 

gate, XOR gate and XNOR gate. Their logic symbols and truth tables are shown in Figure 9.

y

x
f

y

x
f

y

x
f

y

x
f

x y f

0 0 1
0 1 1
1 0 1
1 1 0

(a)

x y f

0 0 1
0 1 0
1 0 0
1 1 0

(b)

x y f

0 0 0
0 1 1
1 0 1
1 1 0

(c)

x y f

0 0 1
0 1 0
1 0 0
1 1 1

(d)

Figure 9: The logic symbols and truth tables for: (a) NAND gate; (b) NOR gate; (c) XOR gate; (d) 
XNOR gate. In these truth tables, x and y are the inputs and f is the output.

The NAND gate is derived from connecting a NOT gate to the output of an AND gate, hence the 

name “NAND” which came from the two words Not-AND. Recall that the NOT gate inverts the input 

value. Thus, the values in the output column of the truth table for the NAND gate are inverted from 

that of the AND gate. We say that the operation of the NAND gate is the inverse of the AND gate, 

and vice versa.

Similarly, the NOR gate is derived from connecting a NOT gate to the output of an OR gate, hence 

the name Not-OR or simply “NOR”. Again, the values in the output column of the truth table for the 

NOR gate are inverted from that of the OR gate.
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The XOR gate, also known as the eXclusive-OR gate, is similar to the OR gate but the output is a 1 

only when one of the inputs is a 1. If both inputs are a 1 then the output is a 0.

The 2-input XNOR gate is the inverse of the 2-input XOR gate. However, the XNOR gate is not al-

ways the inverse of the XOR gate. It turns out that the XNOR gate is the inverse of the XOR gate only 

for when the number of inputs is even. When the number of inputs is odd, the XNOR gate operates 

exactly like the XOR gate.

In addition to having just two inputs for all of the above mentioned gates (except for the NOT 

gate), they can have more than two inputs. Theoretically, there is no upper limit to the maximum 

number of inputs to these gates. In practice, however, they have only 2-, 3-, 4-, 6- and 8- inputs. Re-

gardless of the number of inputs they have, they always have only one output. Figure 10 shows the 

symbols for a 3-input NAND gate, a 4-input AND gate, and a 6-input OR gate.

(a) (b) (c)

Figure 10: The logic symbols for: (a) 3-input NAND gate; (b) 4-input AND gate; (c) 6-input OR gate.

The truth tables for the 3-input NAND gate, 3-input AND gate and 3-input OR gate are shown in 

Figure 11.

x y z f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

(a)

x y z f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

(b)

x y z f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(c)

Figure 11: Truth table for: (a) 3-input NAND gate; (b) 3-input AND gate; (c) 3-input OR gate.

3.2.	 Digital Circuits
A digital circuit is just the connections of a number of these logic gates together. There are certain 

rules, however, that one must follow in connecting these logic gates together to make an operation-

ally correct circuit. (1) The output of a gate is always connected to the input of one or more gates 

unless it is a primary output. (2) Primary outputs are the very last outputs from the circuit and are not 

connected to the inputs of other gates, but instead are connected to external devices such as light 

emitting diodes (LEDs) and VGA monitors. (3) The outputs from two or more gates cannot be con-

nected to the same input of the same gate. (4) Primary inputs, which are inputs from external devices 

such as switches and push buttons, are always connected to the inputs of various gates.
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At this point, we will focus on the logical aspects of designing the digital circuit itself and not on 

how the external devices are connected to the primary inputs and primary outputs. For our imple-

mentation and testing purposes, we will connect the primary inputs to switches and buttons that 

will simply produce a 0 or a 1, and connect the primary outputs to simple LEDs that will be turned on 

when there is a 1 and turned off when there is a 0.

Figure 12 are schematic drawings of some very simple digital circuits.

x
y
z f

(a)

x
y
z

f
g

(b)

y
z f

(c)

x
y

z f

(d)

Figure 12: Sample digital circuits: (a) combinational circuit; (b) combinational circuit with one 
output connected to two inputs; (c) sequential circuit; (d) invalid circuit with two outputs connected 
to the same input. 

In Figure 12 (a), the circuit has three primary inputs, x, y and z, from the external world, i.e., the 

user supplies either a 0 or a 1 to each of these three inputs. x and y are connected to the inputs of the 

AND gate, and z is connected to one input of the OR gate. The output of the AND gate is connected 

to the second input of the OR gate. Finally the primary output of the circuit is f which is from the out-

put of the OR gate. Signals, either as 0’s or 1’s, originate from the primary inputs and travel through 

the various gates, finally ending at the primary output f. 

The circuit in Figure 12 (b) has three inputs, x, y and z, and two outputs, f and g. This circuit also 

shows an example of where the output of one gate is connected to the inputs of two different gates. 

As you can see, the output of the AND gate is connected to the input of the OR gate and to the input 

of the XOR gate. Also, the primary input z is connected to both the input of the NOT gate and to the 

input of the OR gate. The output of the XOR gate is connected to the input of the NAND gate, and 

is also the primary output signal g. The output from the NAND gate is the second primary output 

signal f.

The circuit in Figure 12 (c) is very similar to the circuit in Figure 12 (a). The one main difference, 

besides having only two inputs, is that the output from the OR gate is connected back to the input 

of the AND gate.

Finally, the circuit in Figure 12 (d) will produce errors because both the AND gate output and the 

NOT gate output are connected to the same input of the OR gate. Think about what happens if the 

AND gate outputs a 1 and the NOT gate outputs a 0? Since a 1 is having voltage like +5 volts, and 
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0 is ground, and by connecting them together, you are creating a short circuit between power and 

ground which is similar to connecting the plus and minus terminals of a battery directly together with 

a piece of wire!

3.3.	 Identifying Combinational Circuits
Before learning to design combinational circuits, we need to be able to determine whether a given 

digital circuit is a combinational circuit or not. And if it is a combinational circuit, then we want to be 

able to formally describe its operation by deriving the truth table for it.

Looking back at the three correct digital circuits in Figure 12, i.e., (a), (b) and (c), two of them are 

combinational circuits and one is a sequential circuit. Can you figure out which two are combinational 

circuits? The difference is not in how many inputs or outputs the circuit has, but rather in how the 

gates are connected together.

 Notice in Figure 12 (a) and (b), signals, as determined by the connections in the circuits, all flow 

in one general direction from the primary inputs on the left-hand side to the primary output on the 

right-hand side. However, in Figure 12 (c), not only is the output from the AND gate connected to the 

input of the OR gate, but the output from the OR gate is connected back to the input of the same 

AND gate, thus, creating a feedback loop. The difference is in the presence of this feedback loop. 

Another way to identify a feedback loop is that the output of a gate is connected back to one of its 

own input either directly or indirectly via other gates.

A circuit is a combinational circuit only if it does not have any feedback loops. Hence, the first two 

circuits without a feedback loop are combinational circuits. The circuit in Figure 12 (c), because of the 

feedback loop, makes it a sequential circuit. Be careful, however, that in larger sequential circuits, the 

feedback loop can go through many gates, and not just two as shown in Figure 12 (c). There might 

also be more than one feedback loop within a circuit, but as long as there is at least one loop, the 

circuit is a sequential circuit. This is the only distinction between a combinational circuit and a sequen-

tial circuit. Hence, it is very easy to tell whether a given digital circuit is a combinational circuit or a 

sequential circuit.

3.4.	 Analysis of Combinational Circuits
Analyzing a circuit means to determine its functional operation. In analyzing a combinational 

circuit, we are given a combinational circuit and we want to find out how it operates. The functional 

operation of a combinational circuit is described formally with a truth table, and you have already 

seen several truth tables for the basic logic gates. So in the analysis of combinational circuits, what we 

want to do is to derive the truth table for a given combinational circuit.

As an example, let us analyze the combinational circuit in Figure 13 (c). The first step in the analysis 

process is to set up the truth table for it. First, we list all of the primary inputs found in the circuit, 

one input per column, followed by all of the primary outputs found in the circuit, again one output 

per column. These columns are labeled with the names of the inputs and outputs. Since the circuit 

in Figure 13 (c) has three input variables, x, y and z, and one output variable, f, therefore we obtain a 
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table having four columns with the four variable names as shown in Figure 13 (a). In the second step, 

we enumerate all possible combinations of 0’s and 1’s for all of the input variables. For three vari-

ables, we will have 23 = 8 different combinations. In general, for a circuit with n input variables, there 

will be 2n combinations going from 0 to 2n – 1. We will insert a row for each combination into the 

table. Figure 13 (b) shows the eight rows with the eight sets of input values in binary counting order.

x y z f

(a)

x y z f

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(b)

x
y
z f

0
0

0

0
0

x
y
z f

0
0

1

0
1

(c)

x y z f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(d)

Figure 13: Deriving a truth table for a combinational circuit: (a) Step one–create a column for each 
input and output; (b) Step two–enumerate all possible combinations of 0’s and 1’s for the inputs; (c) 
Step three–for each set of input values, trace through the circuit to determine the output value. The 
top circuit is annotated with the first set of input values and the bottom circuit is annotated with 
the second set of input values; (d) the completed truth table.

The third and final step is to fill in the values for the output column(s). For each row in the table 

(that is, for each set of input values), we need to determine what the output value is. This is done by 

first substituting each set of input values into the circuit’s primary inputs. Knowing the primary input 

values, we can determine for each gate in the circuit what its output ought to be by starting from 

the primary inputs and tracing through the circuit to the final output. For example, in the top circuit 

in Figure 13 (c), using xyz = 000 (i.e., x = 0, y = 0 and z = 0), the two inputs to the AND gate are both 

0. Hence the output of the AND gate will be a 0, since from the AND gate truth table, 0 AND 0 is 0. 

This 0 from the output of the AND gate goes to one input of the OR gate, and the other input to 

the OR gate is also a 0 (from z = 0). From the OR gate truth table, we see that 0 OR 0 is 0. Hence, the 

output of the OR gate, which is also the primary output for the circuit at f is 0. Therefore, the value 

0 for f is inserted into the truth table under the f column and in the row where xyz = 000 as shown 

in Figure 13 (d).

Continuing on for the next set of input values where xyz = 001 as shown in the bottom circuit in 

Figure 13 (c), the output of the AND gate is again 0. However, with z being a 1 going into the OR gate, 

the output of the OR gate will be a 1. Therefore, f is a 1 for this second set of inputs. This 1 is inserted 

under the f column and in the second row of the truth table where xyz = 001. This tracing process is 

repeated for the rest of the combinations, and at the end you will have the completed truth table for 

the circuit as shown in Figure 13 (d).

To help speed up the tracing process, notice that when input z is a 1, the output of the OR gate will 
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always be a 1 regardless of the other input. Therefore, when z is a 1, it doesn’t matter what x and y 

are, f will always be a 1. By reasoning this way, you can more quickly determine many of the output 

values without having to actually trace through the entire circuit with each set of numbers.

As an exercise, derive the truth table for the circuit shown in Figure 14 (a). Try to derive your own 

truth table first, and after you have done that, then compare your results with the answer shown in 

Figure 14 (b).

(a)

x y z f

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

(b)

Figure 14: (a) A combinational circuit and (b) the truth table for it.

3.5.	 Boolean Algebra
Instead of drawing combinational digital circuits using logic gate symbols as we have seen so far, 

we can use Boolean equations to represent these combinational circuits. Using Boolean equations 

to represent combinational circuits allow us to easily manipulate them by using Boolean algebra. 

Boolean algebra is very similar to the algebra in mathematics with which you should already be 

familiar. For instance, both of them have constants and variables, and operators for manipulating 

the constants and variables. Furthermore, both of them have axioms and theorems, and many of the 

theorems, such as the commutative theorem and the associative theorem, are very similar. One main 

difference between the two, however, is the fact that in mathematics you normally work with deci-

mal numbers which use the digits from 0 to 9, but in Boolean algebra, we work with binary numbers 

which use only the two binary digits 0 and 1. Another main difference between the two is that in 

mathematics, there are four operations, add, subtract, multiply and divide, that you perform on the 

constants and variables, but in Boolean algebra, there are only three operations, AND, OR and NOT. 

With the reduced number of constants and operations, you can guess that Boolean algebra should 

be much simpler, and it is.

3.5.1.	 Expressions and Equations

When writing Boolean expressions or Boolean equations, we use the symbol • or no symbol at all 

for the AND operation, the symbol + for the OR operation, and the symbol ‘ or ¯ for the NOT opera-

tion. Here are two simple examples of Boolean equations: 0 • x = 0 reads “0 AND x is equal to 0,” and 

x
y
z

f
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0’ = 1 or 0 = 1 reads “NOT 0 is equal to 1.” Another example is

f = x + yz’

which reads “f is equal to x OR y AND NOT z.” First of all, notice that these Boolean equations are 

written just like mathematical equations, except that the + symbol is not for addition but for the OR 

operation, and the • symbol is not for multiplication but for the AND operation. Second, notice that 

the • symbol for the AND operation can be removed (just like the multiplication in math), so y • x can 

be written as yx. Third, the expression is normally evaluated from left to right, but just like in math 

where the multiplication and division operations are performed before the addition and subtraction 

operations, so in Boolean equations, the NOT operation has the highest precedence, followed by the 

AND operation, and lastly the OR operation. The ordering in which these operations are performed 

can be changed by the use of parenthesis. So in the equation

f = x + yz’

the NOT z is performed first, followed by the y AND z’, and lastly the x OR yz’. If we want to per-

form the x + y before the yz, we would have to add in parenthesis like this

f = (x + y)z’

If we want to negate (NOT) the entire expression (x + y)z, we would have to write either

f = ((x + y)z)’   or   ( )f x y z= +

Be careful when you use a variable name that has more than one letter such as sum, and not in-

terpret it as s • u • m.

There are no special symbols for the NAND and NOR operations. The expression for the NAND 

operation is just (xy)’ and the expression for the NOR operation is just (x + y)’.

Two other symbols are also used in Boolean expressions and equations. They are ⊕ for the XOR 

operation and ¤ for the XNOR operation. From the definition of the XOR operation, we have the 

equality

x ⊕ y = x’ y + xy’

and from the definition of the XNOR operation, we have the equality

x ¤ y = x’ y’ + xy

See Experiments 4 and 6 of Lab 2 for proofing the correctness of these two equalities.

3.5.2.	 Axioms and Theorems

The axioms and theorems for Boolean algebra are listed in Figure 15. Figure 15 (a) lists the axioms, 

(b) lists the single-variable theorems, and (c) lists the two- and three-variable theorems. All of them 

come in pairs. For example, axiom 1a and axiom 1b is a pair. The pairing basically comes from the fact 
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that one set uses the AND operation (the “a” set), and the second set uses the OR operation (the “b” 

set).

The first four pairs of axioms listed in Figure 15 (a) are basically just a summary of what we already 

know about the AND, OR and NOT operations from their truth tables. 1a, 2a and 3a are directly from 

the AND truth table; 1b, 2b and 3b are directly from the OR truth table; and 4a and 4b are directly 

from the NOT truth table.

1a. 0 • 0 = 0 1b. 1 + 1 = 1

2a. 1 • 1 = 1 2b. 0 + 0 = 0

3a. 0 • 1 = 1 • 0 = 0 3b. 1 + 0 = 0 + 1 = 1

4a. 0’ = 1 4b. 1’ = 0

(a)

5a. 0 • x = 0 5b. 1 + x = 1

6a. 1 • x = x 6b. 0 + x = x

7a. x • x = x 7b. x + x = x

8a. (x’ )’ = x

9a. x • x’ = 0 9b. x + x’ = 1

(b)

10a. x • y = y • x 10b. x + y = y + x

11a. (x • y) • z = x • (y • z) 11b. (x + y) + z = x + (y +  z)

12a. x • (y + z) = (x • y) + (x • z) 12b. x + (y • z)  = (x + y) • (x + z)

13a. (x • y)’ = (x’ + y’ ) 13b. (x + y)’ = (x’ • y’ )

(c)

Figure 15: Boolean algebra axioms and theorems: (a) axioms; (b) single-variable theorems; (c) two- 
and three- variable theorems.

The single-variable theorems listed in Figure 15 (b) basically show what happens when you com-

bine a single Boolean variable with a constant. And again, these are a direct result from the defini-

tions of the AND, OR and NOT operations. For example, theorem 5a says that when you AND a 0 with 

another value (in this case the variable x), it doesn’t matter what this other value is the result will 

always be a 0. Similarly, theorem 5b says that when you OR a 1 with another value (in this case the 

variable x), it doesn’t matter what this other value is the result will always be a 1. Theorems 6a and 

6b say that if you AND a 1 with x or OR a 0 with x, the result will always be x. Again, theorems 5 and 

6 are a direct result from the definitions of the AND and OR operations. Theorem 7a is obtained from 

axioms 1a and 2a, and theorem 7b is obtained from axioms 1b and 2b. Theorem 8 simply says that if 

you double negate a value, you get back the original value. For theorem 9a, you AND x with x’. But 

since there are only two possible constant values (0 and 1), therefore, if x is a 1 then x’ has to be a 

0, and vice versa. Therefore, one of the two values that you AND with will always be a 0, and so the 

result of the AND will always be a 0 (from theorem 5a).

For the two- and three-variable theorems in Figure 15 (c), theorem 10 is just the commutative 

property in mathematics that you know; theorem 11 is the associative property; and theorem 12 is 
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the distributive property. Note that for theorem 12a and b, you can have the AND distributing over 

the OR, and the OR distributing over the AND. This is not true for the math version of the distributive 

property, but true in Boolean algebra.

Theorem 13 is very special and so it has a name; it is called DeMorgan’s theorem’s theorem. Theo-

rem 13a says that if you take the inverse of (x AND y), you get (the inverse of x) OR (the inverse of 

y). Similarly for theorem 13b, if you take the inverse of (x OR y), you get (the inverse of x) AND (the 

inverse of y). An easy way to remember this is to change all the + to • and vice versa, and change all 

the prime to no prime and vice versa. See Section 3.7, and Lab 1, Experiments 14 and 15 for proofing 

the correctness of this theorem.

3.5.3.	 Manipulating Boolean Equations

Given a Boolean equation, we can modify it, yet without changing its functional equivalency, by 

applying any of the Boolean axioms and theorems to it. For example, if we start with the following 

equation

f	 = y + xy

we can transform it to any of the following intermediate forms and they will all be functionally 

equivalent

f	 = y + xy

	  = 1 • y + xy using theorem 6a

	  = (x + x’ ) • y + xy using theorem 9b

   = xy + x’ y + xy using distributive theorem 12a

   = xy + xy + x’ y using commutative theorem 10b

   = xy + x’ y using theorem 7b

   = (x + x’ )y using theorem distributive theorem 12a in reverse

	   = 1 • y using theorem 9b

	   =	 y using theorem 6a

3.5.4.	 Relationship between Boolean Equations and Combinational Circuits

It turns out that every output signal in a combinational circuit can be expressed as a Boolean equa-

tion, and every Boolean equation has a corresponding combinational circuit. Figure 16 shows some 

sample combinational digital circuits with there corresponding Boolean equation. In Figure 16 (g) and 

(h), the Boolean equations for the XOR and XNOR gates are not so obvious, because they are actu-

ally derived from their corresponding truth tables. Experiments 4 and 6 of Lab 2 show that these two 

gates are equivalent in operation to the two circuits in Figure 16 (e) and (f) respectively, hence the 

equations are identical. To derive the Boolean equation for larger combinational circuits, it is easier 
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to annotate the circuit at the output of each gate with their intermediate expression until you reach 

the final output. Two examples are shown in Figure 16 (i) and (j).

x
y
z f

xy
xy+z

f = xy + z

(a)

x
y
z

f
z' yz'

x+yz'

f = x + yz’

 (b)

fx
y

f = (xy)’

(c)

 
fx

y  

f = (x+y)’

(d)

f

x

y
x'

y'
xy'

x'y

xy' + x'y

f =  xy’ + x’y

(e)

f

x

y
x'

y'

xy

x'y'

xy + x'y'

f = xy + x’y’

 (f)

fx
y

f = xy’ + x’y

(g)

 
fx

y  

f = xy + x’y’

(h)

x
y
z

f

xy

z'

xy(z' )' + (xy)' z'

f = xy(z’ )’ + (xy)’ z’

(i)

x
y
z

f

xy(z' )' + (xy)' z'

xy

z'

xy+z
[(xy+z) (xy(z' )' + (xy)' z' )]'

f = [(xy+z) (xy(z’ )’ + (xy)’ z’ )]’

(j)

Figure 16: Sample combinational digital circuits and their corresponding Boolean equation.

Since there is a direct relationship between a combinational circuit diagram and its correspond-

ing Boolean equation, therefore we can also easily derive the truth table from the equation instead 

of from the circuit diagram. The procedure would be identical. The only difference is that instead of 

substituting the input values into the diagram, you would substitute them into the equation.
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3.6.	 Simplifying Combinational Circuits
Notice that the truth table in Figure 14 (b) is exactly the same as the truth table for a 3-input NAND 

gate shown in Figure 11 (a). What this means is that functionally, the 3-input NAND gate operates 

exactly the same as the circuit in Figure 14 (a), but obviously the 3-input NAND gate is much smaller 

in size. Hence, if we want just the functionality of the circuit in Figure 14 (a), we should implement 

it by using a 3-input NAND gate. This way we will have a much smaller circuit but having the same 

functionality.

In section 3.5.3, we also saw how we use the Boolean axioms and theorems to transform the equa-

tion f = y + xy to a much simpler but functionally equivalent equation f = y.

There are different formal methods for simplifying combinational circuits. These include the use 

of Boolean algebra, Karnaugh-maps (or K-maps for short), and tabulation methods. Using Boolean 

Theorems and Boolean algebra is the theoretical method, whereas using K-maps is a visual method. 

K-maps are easier to understand but only works for very few inputs (maybe five at most). In practice, 

there will be much more than five input variables. Tabulation methods are best suited for program-

ming the computer and they work for any number of inputs. In this courseware, we will discuss the 

use of Boolean algebra and K-maps.

3.6.1.	 Using Boolean Algebra

You have already seen in section 3.5.3 how a Boolean equation can be modified, but without 

changing its functional operation, by applying any of the Boolean axioms and theorems to it. So us-

ing the Boolean algebra method to simplify combinational circuits simply means that we start with 

a Boolean equation of the circuit and then use the axioms and theorems to transform the equation 

to a more reduced but functionally equivalent equation. The smaller the equation, the smaller the 

circuit will be.

We have noted that the two circuits shown in Figure 17 are equal in operation. Their correspond-

ing equations are also shown.

x
y
z

f

f = [(xy+z) (xy(z’ )’ + (xy)’ z’ )]’ 

(a)

y
x

z
f

f = (xyz)’

(b)

Figure 17: Two functionally equivalent combinational circuits.

We will now show how the equation f = [(xy+z)(xy(z’’ )+(xy)’ z’ )]’ can be transformed to f = (xyz)’ 

using the Boolean axioms and theorems. There are no set rules as to which axiom or theorem is to be 

used first and when to use it. So there might be other ways to perform this transformation.
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f	 = [(xy+z) (xy(z’ )’ + (xy)’ z’ )]’
	  = [(xy+z) (xyz + (xy)’ z’ )]’  using theorem 8a on (z’ )’ 
	  = [(xy+z) (xyz + (x’ + y’ )z’ )]’  using theorem 13a on (xy)’
   = [(xy+z) (xyz + x’z’ + y’z’ )]’  using theorem 12a on (x’ + y’ )z’
   = [xyxyz + xyx’z’ + xyy’z’ + zxyz + zx’z’ + zy’z’ ]’ using theorem 12a two times, one for xy and 		

	 one for z
   = [xyz + xyx’z’ + xyy’z’ + xyz + zx’z’ + zy’z’ ]’ using theorem 7a two times, one for xy and one for 	

	 z
   = [xyz + xyx’z’ + xyy’z’ + zx’z’ + zy’z’ ]’ using theorem 7b on xyz + xyz
   = [xyz + 0 + 0 + 0 + 0]’ using theorem 9a and 5a four times
   = (xyz)’ using theorem 6b

Hence, we have again shown that the two circuits are functionally equivalent.

3.6.2.	 Using K-Maps

The K-map method is a visual technique for simplifying Boolean equations. The K-map itself is 

just another way of representing the truth table, and like the truth table, it is also a 2-dimensional 

table. The main difference is in the labeling of the columns and rows. The columns and rows in a 

K-map are labeled with the input variable names and their two possible constant values. Since each 

variable can have either a 0 or a 1, therefore, two columns or two rows are needed for each vari-

able. Figure 18 shows the setup of a K-map for two-, three- and four variables. For the two-variable 

K-map in Figure 18 (a), we have placed the variable x in the two rows and the variable y in the two 

columns. The intersection of each row and column gives us the unique value for these two variables 

hence there are the four intersection boxes that represent the unique combination of the two input 

variables xy having the values 00, 01, 10 and 11.

10

0

1

y

x

f

(a)

0100

0

1

yz

x

f
1011

(b)

0100

00

01

yz

wx

f
1011

11

10

(c)

Figure 18: K-map setup for: (a) two variables; (b) three variables; and (c) four variables.

Regardless of how many variables the equation has, the K-map for it is still going to be a 2-dimen-

sional table. Hence, for a three-variable K-map, we need to double up two of the variables as shown 

in Figure 18 (b) for the two variables y and z. (It does not matter whether you put it in the columns or 

the rows.) Now, each column will have two unique values for yz–00, 01, 10 and 11. Notice, however, 

that we reversed the label ordering for the third and fourth columns. The reason is that in order for 

the K-map to work, the values for every adjacent column or row must differ in only one bit. So with 

this new ordering, 00, 01, 11 and 10, this condition is satisfied. Notice that this condition is also satis-

fied between the first and last columns, 00 and 10. Hence, you need to visualize that the first and last 
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columns are also adjacent to each other.

For a four-variable K-map, we will have two variables with four combinations for both the col-

umns and rows as shown in Figure 18 (c). Again, the value labeling for both the third and fourth 

columns and rows are reversed.

As you can quickly see, it is almost impossible to visualize a five-variable K-map, although it is 

sometimes done. The fifth variable, v, will be in a third dimension. There will be two four-variable 

K-maps, one on top of the other, with one for when v is a 0, and the other for when v is a 1.

What we put into the intersection boxes in a K-map are the 1 output values in the equation or 

truth table. For example, if we want to minimize the equation in Figure 19 (a), the corresponding 

truth table and K-map for this equation is shown in (b) and (c). We do not need to include the 0 

outputs from the truth table in the K-map because we are only interested in when the equation 

produces a 1 output.

f = x’ y + xy

(a)

x y f

0 0 0

0 1 1

1 0 0

1 1 1

(b)

1

1

1

0

0

1

y

x

f

(c)

1

1

1

0

0

1

y

x

f

(d)

Figure 19: (a) Boolean equation; (b) corresponding truth table; (c) corresponding K-map; and (d) 
K-map with subcube formed.

Having set up the K-map and added all of the 1 outputs from the truth table into the K-map, we 

are ready to minimize the equation using the K-map by forming subcubes. We form subcubes by 

circling adjacent boxes with 1’s in them. The following rules must be observed when forming the 

subcubes.

1.	 All of the 1-boxes must be physically adjacent to each other except for the two ends. For 

the two end boxes (such as those in a three- and four-variable K-maps), visualize them as also 

being adjacent to each other because they also differ in only one bit (from 00 to 10).

2.	 The size of the subcube (i.e., the number of 1-boxes inside the subcube) must be a power 

of two. So you can only have 1, 2, 4, 8, etc. number of 1-boxes inside a subcube.

3.	 The shape of a subcube must be a rectangle either horizontally or vertically.

4.	 All of the 1-boxes in a K-map must be inside a subcube, but the same 1-box can be inside 

one or more subcubes.

5.	 The size of each subcube should be made as large as possible.
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Forming subcubes is like trying to figure out a puzzle where you want to have as few subcubes 

as possible, and each subcube to be as large as possible2. Figure 19 (d) shows the subcube of size 2 

containing the two adjacent 1’s.

Figure 20 shows some valid subcubes of various sizes. Figure 20 (a) is a rectangular subcube of size 

2. Figure 20 (b) is a square subcube of size 4. Figure 20 (c) is a square subcube of size 4. Notice that the 

four 1’s are adjacent to each other because column 10 wraps around and is adjacent with column 00. 

Figure 20 (d) and (e) both have two subcubes each, one of size 8 and one of size 4. Two of the 1-boxes 

are in both subcubes. Figure 20 (f) have two subcubes, one of size 4 and one of size 2. For the size-4 

subcube, the four cornered 1’s are all adjacent because they all wrap around.
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Figure 20: Examples of valid subcubes: (a) subcube of size 2; (b) subcube of size 4; (c) wrap-around 
subcube of size 4; (d) two subcubes, one of size 8 and one of size 4. Notice that two of the 1’s are in 
both subcubes; (e) two subcubes, one of size 8 and one of size 4; and (f) two subcubes, one of size 2 
and one of size 4.

Figure 21 shows some invalid subcubes. In Figure 21 (a), the two size-1 subcubes can be made 

larger by combining them together into one size-2 subcube. In Figure 21 (b), the subcube size (with 

three 1’s) is not a power of 2. In Figure 21 (c), the subcube shape is not a rectangle. In Figure 21 (d), 

the size-2 subcube can be made larger into a subcube of size 4. In Figure 21 (e), the subcube with size 

6 is not a power of 2, and the size-2 subcube is not horizontal or vertical. In Figure 21 (f), the four 1’s 

are not adjacent.

2	Refer to the book “Digital Logic and Microprocessor Design with VHDL” by E. Hwang for a 

detailed discussion on how to use K-maps to simplify combinational circuits.
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Figure 21: Examples of invalid subcubes: (a) size of both subcubes can be made larger; (b) size of 
subcube is not a power of 2; (c) shape of subcube is not rectangle; (d) size of the 2 subcube can be 
made bigger; (e) size of the larger subcube with six 1’s is not a power of 2, and the smaller subcube 
is not horizontal or vertical; (f) the 1-boxes are not adjacent.

Figure 22 shows how to form valid subcubes for the K-maps shown in Figure 21. In Figure 22 (a), 

the two 1’s are grouped together to form one subcube. In Figure 22 (b), the three 1’s are separated 

into two subcubes of size 2 each. In Figure 22 (c), the four 1’s are separated into two subcubes of size 

2 each. In Figure 22 (d), the size-2 subcube is made into a subcube of size 4. In Figure 22 (e), the six 1’s 

are separated into two subcubes of size 4 each. The 1-box in column 10 is combined with the 1-box 

in column 00 of the same row to make a subcube of size 2. The 1-box in column 11 is not adjacent to 

any other 1’s, so it is a subcube all by itself. In Figure 22 (f), the two 1’s at the top are not adjacent to 

the two 1’s at the bottom, so they must be separated into two subcubes of size 2 each.
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Figure 22: Examples of valid subcubes from the K-maps in Figure 21: (a) size of both subcubes can 
be made larger; (b) size of subcube is not a power of 2; (c) shape of subcube is not rectangle; (d) size 
of the 2 subcube can be made bigger; (e) size of the larger subcube with six 1’s is not a power of 2, 
and the smaller subcube is not horizontal or vertical; (f) the 1-boxes are not adjacent.

You may have wondered why for Figure 22 (b) that we did not make the following subcubes in-

stead.
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yz
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f
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The answer should be obvious because rule 5 says that we need to make each subcube as large as 

possible, and the subcube of size 1 can be made into a subcube of size 2. Furthermore, rule 4 says that 

a 1-box can be inside one or more subcubes.

Having formed the subcubes for covering all of the 1’s in the K-map, the final step is to write up 

the reduced equation. Each subcube becomes one AND term in the equation, and all of the AND 

terms will be ORed together to produce the final simplified equation. For each subcube, write down 

the variable(s) having the same value for all of the 1-boxes in that subcube. If the value is a 0 then ne-

gate the variable, and if the value is a 1 then just leave the variable as is. All of the variables obtained 

from the same subcube are ANDed together to form one AND term.

Figure 23 shows the simplified equations as obtained from the K-maps in Figure 20. The K-maps 

are redrawn here for convenience. In Figure 23 (a) the value of x for both of the 1-boxes is 0, but 

the value of y is a 0 for the left 1-box, and a 1 for the right 1-box. Hence, there is only one variable 

x that has the same value (a 0) for all of the 1-boxes, therefore this AND term will consist of just one 

variable x’. The final reduced equation from this K-map is f = x’. In Figure 23 (b), the value of x is a 

0 for the top two 1-boxes and a 1 for the bottom two 1-boxes. The value of y is a 0 for the left two 

1-boxes and a 1 for the right two 1-boxes. Only the value of z for all four 1-boxes is a 1. Hence, the 

simplified equation from the K-map is f = z. In Figure 23 (c), again only z has the same value for all of 

the four 1-boxes, but this time the common value is a 0 so the equation is f = z’. In Figure 23 (d), there 

are two subcubes. For the size-8 subcube, only y has a 0 for all eight of the 1-boxes, so the AND term 
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from this subcube is y’. For the size-4 subcube, w has the value 0 and x also has the value 0 for all four 

of the 1-boxes. The other two variables have different values, so the AND term from this subcube is 

w’x’. The final simplified equation from this K-map will ORed the two AND terms together to give f 

= y’ + w’x’. The ordering of the AND terms in the equation does not matter because of the commuta-

tive property, but it is preferred to list the larger subcubes (fewer variables in the AND terms) first. In 

Figure 23 (e), there are also two subcubes. The size-8 subcube is the same as the previous one so the 

AND term for this subcube is also y’. For the size-4 subcube, x has a common value of 1 and z has a 

common value of 0, so the AND term for this subcube is xz’. The simplified equation is f = y’ + xz’. In 

Figure 23 (f), the size-4 subcube AND term is x’z’ and the size-2 subcube AND term is w’xz. The simpli-

fied equation is f = x’z’ + w’xz.
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Figure 23: Simplified equations from the K-maps in Figure 20.

As an exercise, you may want to find the simplified equations from the K-maps shown in Figure 22. 

These equations are: (a) f = y; (b) f = xy’ + xz; (c) f = xy’ + yz; (d) f = z + w’x; (e) f = w’y’ + xy’ + wxz’ + 

wx’yz; (f) f = w›x›y› + wx›y.

The simplified equation obtained from a K-map may not necessary be the smallest possible equa-

tion. After having obtained the simplified equation from a K-map, you may be able to reduce it even 

further using Boolean algebra.
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3.7.	 Synthesis of Combinational Circuits
In the synthesis of combinational circuits, we are first given either an informal description3 of the 

circuit’s operation or a formal description with a truth table. If we start with an informal description, 

then we need to first construct the formal truth table for it. From the truth table, we can derive the 

Boolean equation for it. Next, we can optionally simplify the equation. And finally from the (simpli-

fied) equation we can derive and implement the circuit.

Deriving the equation from a given truth table is actually quite straight forward. There will be one 

equation created for each output signal in the circuit. The steps to create an equation for one output 

signal are as follows:

1. Create an AND term for each row in the truth table where the output signal is a 1. Each AND 

term is created as follows. For that one row of input values:

	a. If the value for an input variable is a 1 then use that variable as is.

	b. If the value for an input variable is a 0 then negate (NOT) the variable.

	c. All of the variables from a. and b. above for that one row are ANDed together to form one 

AND term.

2. All of the AND terms created in step 1 above are ORed together to produce the final equation. 

Once we have the equation, we can easily derive the circuit for it as shown in Section 3.5.4. Thus, 

given any truth table, we can produce a circuit for it by simply ANDing the inputs of a row for which 

the output of that row is a 1, and then ORing the outputs of all the AND gates together. If the truth 

table has two or more output variables then you repeat the same process creating one equation for 

each output variable.

Let us now synthesize the circuit for the truth table shown in Figure 24 (a). It has two inputs, x and 

y, and one output f.

x y f

0 0 0
0 1 1
1 0 1
1 1 0

(a)

f = x’ y + xy’

(b)

f

x

y

(c)

Figure 24: Synthesis example: (a) truth table; (b) equation; and (c) synthesized circuit.

We see that there are two rows where f has a 1, so we will have two AND terms, one for each row. 

3	 As in when your supervisor gives you a verbal imprecise description of a circuit that he or she 

wants.
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In the first row where f has a 1, the value for x is 0 so we negate the variable x to get x’. In the same 

row, the value for y is 1 so we don’t need to change it. The AND term for this first row is therefore x’ y. 

Continuing on in the same manner, in the second row where f has a 1, x is a 1 and y is a 0, so the AND 

term for this second row is xy’. Finally, we ORed these two AND terms together to give the resulting 

equation for the circuit shown in Figure 24 (b). The circuit as obtained from this equation is shown in 

Figure 24 (c). You probably recognize the equation in Figure 24 (b) as the equation for the XOR gate. 

It has to be because the truth table that we started out with is for the XOR gate.

As another example, let us synthesize the circuit for the truth table shown in Figure 25 (a).

x y z f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(a)

f = x’y’z + x’yz + xy’z + xyz’ + 
xyz

(b)

x y z

f

(c)

Figure 25: Synthesis example: (a) truth table; (b) equation; and (c) synthesized circuit.

There are five 1’s in the output f column, so we will have five AND terms in the final equation. 

These five AND terms in order are: x’y’z, x’yz, xy’z, xyz’ and xyz. ORing these five AND terms together 

give us the equation for the circuit shown in Figure 25 (b). The circuit as derived from this equation 

is shown in Figure 25 (c).

You may have recognized that this truth table in Figure 25  (a) is the same truth table from 

Figure 13 (d). However, the circuit obtained from this truth table certainly is much larger in size than 

the circuit shown in Figure 13 (c)! The conclusion is that if you start out with a circuit, derive the truth 

table for it, and then derive the circuit from the truth table, you most likely will not get the same 

circuit that you started out with. The equation that you obtain directly from a truth table without 

any simplification will always produce the largest circuit for that truth table. You should, therefore, 

always try to simplify it to get a smaller circuit.

If the truth table has more than one output, then you simply create one circuit for each output. 

However, it is possible that some AND terms are the same and so you can remove the duplicate ones. 

For example, given the truth table with two outputs f and g shown in Figure 26 (a), the two separate 

circuits for f and g are shown in Figure 26 (b). Notice, however, that both outputs have a 1 for the 

row xyz = 110. The AND term for this row is needed in both circuits, but the total circuit can be made 

smaller by using only one AND gate for both of these two AND terms as shown in Figure 26 (c).
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x y z f g

0 0 0 1 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 1 1
1 1 1 0 0

(a)

x y z

f

g

(b)

x y z

f

g

(c)

Figure 26: Synthesis example: (a) truth table with two outputs; (b) the two separate circuits; and 
(c) the two circuits with one AND gate removed.

We will conclude our discussion by proofing the correctness of DeMorgan’s theorem. Theorem 13a 

says:

(x · y)’ = (x’ + y’ )

The left side of this equation, (x · y)’, is just the expression for the 2-input NAND gate (see 

Figure 16 (c) and Figure 9 (a) if you have forgotten), and we know that the truth table for the 2-input 

NAND gate is:

This 2-input NAND gate truth table shows that there are three 1’s in the output column, and these 

three 1’s correspond to the three AND terms x’y’, x’ y and xy’. ORing these three AND terms results in 

the equation

f = x’y’ + x’ y + xy’

This equation for the 2-input NAND gate can be simplified as follows

f = x’y’ + x’ y + xy’

	  = x’y’ + x’ y + x’y’ + xy’

	  = x’ (y’ + y) + y’ (x’ + x)

	  = x’ • 1 + y’ • 1

	  = x’ + y’

The last equality is the right hand side of the equation in DeMorgan’s theorem.

x y f

0 0 1

0 1 1

1 0 1

1 1 0
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Chapter 4

Labs
The following labs will teach you how to design and implement combinational circuits. Many of 

these circuits are standard components used in microprocessor circuits. You will need to understand 

these circuits in order for you to use them in our Microprocessor Design Trainer where you will actu-

ally design and implement your very own custom real working microprocessor!

4.1.	 Lab 1: Basic Gates, Lights, Action!

Purpose

In this lab you will first learn how to implement combinational logic circuits using the Combina-

tional Logic Trainer by connecting the basic logic gates and I/Os correctly for a given circuit. You will 

use the trainer to confirm the operations of the basic gates. Finally, you will learn how to derive the 

truth table for any combinational circuits.

Introduction 

The AND, OR and NOT gates are the basic building blocks for building any digital logic circuits. 

Any digital logic circuit, no matter how large or complex it is, can be constructed using these three 

types of basic gates. Therefore, in order to design digital logic circuits, you need to know how these 

gates operate.

Experiments

1. The three thick lines in Figure 2B show three wires connected from the two switches, SW6 and 

SW7, to the inputs of the 2 input AND#12 gate 4, and the output of this AND 5 gate is connected 

to LED6. Using three pieces of hook-up wires, make these same connections now on your trainer. 

Slide the two switches up and down and record the output on LED6 for all combinations of the 

input switches in the blank truth table provided at the end of this lab. Remember that when the 

switch is in the up position, it is a logic 1, and when it is in the down position, it is a logic 0. Verify 

that your results match the AND logic truth table shown in Figure 7 (a) (Page 10).

2. After you have confirmed that the AND gate does work according to the truth table, repeat 

the experiment with the 2-input OR gate. Connect the two switches to the inputs of a 2-input OR 

gate, and connect the output from the OR gate to the LED. Slide the two switches up and down 

and record the LED output for all combinations of the input switches in the blank truth table 

provided. Verify that your results match the truth table in Figure 7 (b).

4	 Remember that we will be using notations such as 2-AND#12 to refer to specific gates on the 

trainer for ease of debugging.
5	 Note that it doesn’t have to be that specific 2-input AND gate. Any 2-input AND gate would work 

also.
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3. Repeat the experiment with the NOT gate. Connect one switch to the input of a NOT gate, 

and connect the output from the NOT gate to a LED. Record your results in the blank truth table 

provided. Verify that your results match the truth table in Figure 7 (c).

4. Repeat the experiment with the 4-input AND gate and the 4-input OR gate. Record your results 

in the blank truth tables provided.

5. If you need to use a 3-input AND gate, you would normally get a 3-input AND gate. However, 

you can also use a 4-input AND gate instead by connecting the unused 4th input to a logic 1. Re-

member that connecting to VCC will always give you a logic 1. On the trainer, the VCC connection 

points are located next to the GND connection points at the bottom right corner.

For this experiment, connect three switches to three inputs of a 4-input AND gate, connect the 

4th input of the AND gate to VCC, and connect the output from the AND gate to a LED. Slide the 

three switches up and down and record the LED output for all combinations of the input switches 

in the blank truth table provided. Verify that your results match the truth table in Figure 11 (b) 

(page 12). What happens if you connect the extra input of the 4-input AND gate to GND instead 

of VCC?

For ease of use, all of the 4-input AND gates in the trainer have pull-up resistors connected to all 

of its inputs. What this means is that you do not have to actually connect any unused inputs of the 

4-input AND gates to VCC and it will still work. Verify this by disconnecting the wire that connects 

from the 4th input to VCC, and see that it still works as before. Keep in mind that this is only true 

for this trainer, and if you do this elsewhere or on a breadboard, you will still have to connect the 

unused inputs to VCC.

6. If you need to use a 3-input OR gate, you would normally get a 3-input OR gate. However, you 

can also use a 4-input OR gate instead by connecting the unused 4th input to a logic 0. Remember 

that connecting to GND will always give you a logic 0.

For this experiment, connect three switches to three inputs of a 4-input OR gate, connect the 4th 

input of the OR gate to GND, and connect the output from the OR gate to a LED. Slide the three 

switches up and down and record the LED output for all combinations of the input switches in the 

blank truth table provided. Verify that your results match the truth table in Figure 11 (c). What 

happens if you connect the extra input of the 4-input OR gate to VCC instead of GND?

For ease of use, all of the 4-input OR gates in the trainer have pull-down resistors connected to 

all of its inputs. What this means is that you do not have to actually connect any unused inputs 

of the 4-input OR gates to GND and it will still work. Verify this by disconnecting the wire that 

connects from the 4th input to GND, and see that it still works as before. Keep in mind that this is 

only true for this trainer, and if you do this elsewhere or on a breadboard, you will still have to 

connect the unused inputs to GND.

7. If you need to use a 6-input AND gate, you would normally get a 6-input AND gate. However, 

you can make a 6-input AND gate by combining a 4-input AND gate with a 2-input AND gate. 

Connect the two outputs from these two AND gates to another 2-input AND gate. The circuit for 
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connecting these three AND gates is shown next:

Connect six switches to this “6-input” AND gate, and connect the output from the second 2-input 

AND gate to a LED. Confirm its operation by recording the LED output for all combinations of the 

input switches.

8. Similarly, you can make a 6-input OR gate by combining a 4-input OR gate with a 2-input OR 

gate. Connect the two outputs from these two OR gates to another 2-input OR gate. Connect six 

switches to this “6-input” OR gate, and connect the output from the second 2-input OR gate to a 

LED. Confirm its operation.

9. Implement the circuit in Figure 12 (a). Connect the three inputs x, y and z, to three switches, 

and connect the output f to a LED. Record the LED output for all combinations of input switches 

in the blank truth table provided. Verify that it operates according to the truth table in Figure 13 

(d).

10. Implement the circuit in Figure 12 (b). Connect the three inputs x, y and z, to three switches, 

and connect the two outputs, f and g, to two LEDs.  Since the trainer does not have a NAND gate, 

you will need to use an AND gate and a NOT gate to get the same functionality as the NAND 

gate. This is accomplished by connecting the output of an AND gate to the input of a NOT gate. 

Determine its operation by deriving its truth table. Record LED outputs in the blank truth table 

provided.

11. Implement the following circuit and determine its operation by filling out the truth table pro-

vided. Recall from experiments 5 and 6 on how to get a 3-input gate from a 4-input gate. Connect 

the three inputs, x, y and z, to three switches, and connect the output f to an LED. Determine its 

operation by deriving its truth table. Also derive the Boolean equation for the circuit.

x y z

f

12. Implement the circuit in Figure 12 (c) and determine its operation by deriving the truth table 

and recording it. Notice that for the input combination y = 1 and z = 0, sometimes the output is 

a 0 and sometimes the output is a 1. This is because of the loop back that is causing a memory 

effect. You will learn more about this in sequential circuits.

13. Implement the circuit in Figure 12 (d). Connect a wire from the output of the AND gate to the 

input of the OR gate, and connect another wire from the output of the AND gate to the output of 



Global Specialties 34

Combinational Logic Design

the NOT gate. Determine its operation by deriving the truth table for it. Is there anything wrong 

with the results?

14. DeMorgan’s theorem 13a states that (x · y)’ = (x’ + y’ ). The circuits for the left and right side 

of the equality are respectively shown next.

	
x
y f

	
x
y f

Separately implement these two circuits and derive their truth tables. Because of the equality, the 

two truth tables should be the same.

15. DeMorgan’s theorem 13b states that (x + y)’ = (x’ · y’ ). Implement these two circuits and derive 

their truth tables similar to Experiment 14 above. Verify that these two truth tables are the same.
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Lab 1: Truth Tables for Reporting Results

x y f

0 0
0 1
1 0
1 1

2-input AND gate

x y f

0 0
0 1
1 0
1 1

2-input OR gate

x f

0
1

NOT gate

Experient 1 Experiment 2 Experiment 3

w x y z f

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

4-input AND gate

w x y z f

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

4-input OR gate

x y z f

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
3-input AND gate

x y z f

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
3-input OR gate

Experiment 4 Experiment 5 Experiment 6

x y z f

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x y z f g

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x y z f

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Experiment 9 Experiment 10 Experiment 11
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y z f

0 0

0 1

1 0

1 1

Experiment 11, Boolean Equaation Experiment 12

x y f

0 0
0 1
1 0
1 1

x y f

0 0
0 1
1 0
1 1

x y f

0 0
0 1
1 0
1 1

x y f

0 0
0 1
1 0
1 1

Experiment 14 Experiment 15
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4.2.	 Lab 2: NAND, NOR, XOR and XNOR Gates

Purpose

In this lab you will experiment with the NAND, NOR, XOR and XNOR gates. You will verify their 

operations by deriving the truth tables for them.

Introduction 

In addition to the AND, OR and NOT gates, the NAND, NOR, XOR and XNOR gates are also consid-

ered as basic building blocks for digital circuits. In practice, the NAND gate is actually used more than 

the AND gate because it requires only four transistors, whereas the AND gate requires six transistors 

to implement. Furthermore, it turns out that all digital logic circuits can be built using only the NAND 

gate!

Experiments

1. As you recall, the operation of the NAND gate is the inverse of the AND gate. If you need to 

use a 2-input NAND gate, you would normally get a 2-input NAND gate, but since our trainer does 

not have any NAND gates, therefore we need to implement it by connecting a 2-input AND gate 

to a NOT gate as shown next:

x
y f

Connect the two inputs of the AND gate to two switches, the output of the AND gate to the input 

of the NOT gate, and finally the output of the NOT gate to an LED. Determine its operation by 

recording the LED output for all combinations of the two input switches in the blank truth table 

provided. Verify that it matches the truth table in Figure 9 (a) Page 11 .

2. The NOR gate is the inverse of the OR gate. Again, we can implement a 2-input NOR gate by 

using a 2-input OR gate followed by a NOT gate. Connect the two inputs of the OR gate to two 

switches, the output of the OR gate to the input of the NOT gate, and finally the output of the 

NOT gate to an LED. Determine its operation by recording the LED output for all combinations 

of the two input switches in the blank truth table provided. Verify that it matches the truth table 

in Figure 9 (b).

3. Verify the operation of the 2-input XOR gate by connecting the two inputs of a 2-input XOR 

gate to two switches and the output to an LED. Determine its operation by recording the LED 

output for all combinations of the two input switches in the blank truth table provided. Verify 

that it matches the truth table in Figure 9 (c).

4. Implement the following circuit and determine its operation by deriving its truth table. Verify 

that this truth table is the same as that for the XOR gate. Also derive the Boolean equation for 

the circuit.



Global Specialties 38

Combinational Logic Design

f

x

y

5. The 2-input XNOR gate is the inverse of the 2-input XOR gate. Implement a 2-input XNOR gate 

by connecting the output of a 2-input XOR gate to a NOT gate. Connect the two inputs of the 

XOR gate to two switches, the output of the XOR gate to the input of the NOT gate, and finally 

the output of the NOT gate to an LED. Determine its operation by recording the LED output 

for all combinations of the two input switches in the blank truth table provided. Verify that it 

matches the truth table in Figure 9 (d).

6. Implement the following circuit and determine its operation by deriving its truth table. Verify 

that this truth table is the same as that for the XNOR gate. Also derive the Boolean equation for 

the circuit.

f

x

y

7. Implement the following circuit and determine its operation by deriving its truth table. Also 

derive the Boolean equation for the circuit.

x y z

f

8. Implement the following circuit and determine its operation by deriving its truth table. Also 

derive the Boolean equation for the circuit.

x y z

f

g

9. Implement the following 3-input XOR gate circuit and determine its operation by deriving its 
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truth tabletruth table for it.

f
x
y
z

10. Implement the following 3-input XNOR gate circuit and determine its operation by deriving 

its truth table.

f
x
y
z

11. Implement the following 4-input XOR gate circuit and determine its operation by deriving its 

truth table.

f
w
x
y
z

12. Implement the following 4-input XNOR gate circuit and determine its operation by deriving 

its truth table.

f
w
x
y
z



Global Specialties 40

Combinational Logic Design

Lab 2: Truth Tables for Reporting Results

x y f

0 0
0 1
1 0
1 1

Experiment 1

x y f

0 0

0 1

1 0

1 1

Experiment 2

x y f

0 0

0 1

1 0

1 1

Experiment 3

x y f

0 0

0 1

1 0

1 1

Experiment 4

x y f

0 0
0 1
1 0
1 1

Experiment 5

  

x y f

0 0
0 1
1 0
1 1

Experiment 6

x y z f

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Experiment 7

x y z f g

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Experiment 8

x y z f

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3-input XOR

Experiment 9

x y z f

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3-input XNOR

Experiment 10

w x y z f

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

4-input XOR

Experiment 11

w x y z f

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

4-input XNOR

Experiment 12
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4.3.	 Lab 3: Designing Combinational Circuits

Purpose

In this lab you will learn how to design combinational circuits from any given truth table and 

implement them on the trainer.

Introduction

As you saw in Lab 1, the operation of any combinational circuit can be described formally by a 

truth table. Moreover, any given truth table can be implemented with a digital circuit. In fact, any 

truth table can be implemented with one or more different but functionally equivalent digital circuit. 

A digital circuit that implements a truth table is always a combinational circuit. The design process be-

gins with an informal description of the circuit that you want. This informal description is translated 

into a precise and formal description of the circuit in the form of a truth table. Given a truth table, 

you can easily construct a combinational circuit for it. Hence, the circuit will operate according to the 

specifications given in the truth table.

As an example, we begin with an informal description of a car security system that we would like 

to implement. This simple car security system consists of a master switch (M) for turning on and off 

the system, a door switch (D) for detecting whether the car door is open or close, a vibration sensor 

(V) for detecting movements of the car, and a siren (S) for sounding the alarm. Given these input and 

output parameters, I assume that you are at least slightly acquainted with the functional operations 

of a security system so that you can precisely describe its operation using a truth table.

First, you layout your truth table with the column labels being the input and output signals. Next, 

using binary numbers, you enumerate all possible input values; creating one row per value. You 

should have the table shown in Figure 27 (a) but without the values in the S column. Interpreting a 

1 being “on” and a 0 being “off”, determine for each row (i.e., each combination of input values) 

what the corresponding output ought to be (i.e., whether the siren S should be turned on or off). For 

example, in the first row where M=0, D=0, and V=0, this means that the system is off, so regardless 

of the state of the door switch or the vibration sensor, the siren should be off. Hence the output S is 

0 for this row. In the row where M=1, D=0, and V=0, this means that the system is on, but since the 

door is closed (D=0) and there is no vibration (V=0), the siren should also be off. Hence the output S 

for this row is also 0. Continuing with this reasoning, you should be able to complete the table and 

obtain the complete truth table as shown in Figure 27 (a).
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M D V S

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(a)

S

M D V

(b)

D

M
V S

(c)

Figure 27: Car security system: (a) truth table; (b) circuit diagram derived from the truth table; (c) 
simplified circuit diagram.

Obtaining a circuit from a truth table is fairly straight forward. For each row where the output (S) 

is a 1, you use the AND operation to AND the input values together. Where the input value is a 1, you 

connect that input directly to an input of the AND gate. Where the input value is a 0, you connect 

the negated input (through the NOT gate) to an input of the AND gate. Finally, the outputs of all the 

AND gates are connected to the inputs of an OR gate to produce the primary output signal. Hence 

from the truth table in Figure 27 (a), you should obtain the circuit in Figure 27 (b). This circuit will 

operate exactly according to the truth table.

In practice, we usually want to make the circuit as small as possible but still operates exactly the 

same. Using logical reasoning and looking at the truth table in Figure 27 (a) more carefully, you might 

notice that the siren should be turned on (S=1) only when the master switch is on (M=1), and either 

the door is opened (D=1) or there is vibration (V=1). In other words, you want S to be 1 only when 

M=1 and either D=1 or V=1 (or both D and V are 1’s). Writing this out as a Boolean equation, we get

S = M AND (D OR V)

In textbooks6, you might see the equation above written as

S = M  • (D + V)

where the • symbol denotes the AND operation, and the + symbol denotes the OR operation, or 

even without the • symbol for the AND operation like this

S = M (D + V)

This equation gives rise to the simplified circuit shown in Figure 27 (c). The two circuits in Figure 27 

are functionally equivalent, i.e., they satisfy the same truth table.

6	 For an in-depth discussion on Boolean equations, refer to the book “Digital Logic and 

Microprocessor Design with VHDL” by E. Hwang.
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Experiments

1. Implement the two circuits in Figure 27 (b) and (c) separately, and verify that both of them operate 

according to the truth table in Figure 27 (a). Connect the master switch M to SW0. Connect the 

door switch D and the vibration switch V to the two push buttons PB0 and PB1. Connect the siren 

output S to LED0. Verify that the circuit operates as described.

2. Design and implement the circuit for the following truth table where x, y, and z are the inputs, 

and f is the output. See Experiment 8 in Lab 1 on how to construct a 6-input OR gate. 

3. Design and implement the circuit for the following truth table where x, y, and z are the inputs, 

and f is the output.

4. Notice that the outputs for Experiment 3 are just the inverse of those from Experiment 2, i.e., all 

the 0’s and 1’s are flipped. In other words, if you implement a circuit by selecting the rows where 

the output f is a 0 instead of a 1, you will end up with the inverse of f. Also notice that the circuit 

for Experiment 3 is much smaller than the circuit for Experiment 2. So a better way to implement 

the truth table for Experiment 2 is to start with the circuit for Experiment 3, and simply add a 

NOT gate to the output to invert the result. Implement this new circuit and verify that it operates 

exactly the same as the circuit from Experiment 2, i.e., both circuits produce the same truth table.

x y z f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

x y z f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0
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5. Design and implement the circuit for the following truth table where x, y, and bin are the in-

puts, and bout and d are the outputs.

x y bin bout d

0 0 0  0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
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4.4.	 Lab 4: Multiplexers

Purpose

In this lab you will learn about multiplexers. A multiplexer is used to channel data from multiple 

sources to one destination. You will design multiplexer circuits and implement them on the trainer.

Introduction

Multiplexer, also known as a mux, is a frequently used component in a digital circuit. They are used 

to pass data from multiple sources to one destination. An analogy of its operation is like a railroad 

switch where two rail tracks are merged into one track. Depending on the switch setting, trains from 

either one of the two tracks are directed onto the one track. The logic symbol for a 2-to-1 mux is 

shown in Figure 28 (a). It has two inputs labeled d0 and d1, and one output labeled y. Instead of pass-

ing trains, data is passed from either input d0 or d1 to the output y depending on the select line s. If 

the value of s is 0 then the data from input d0 is passed to the output, and if the value of s is 1 then 

the data from input d1 is passed to the output. The simplified circuit for the 2-to-1 mux is shown in 

Figure 28 (b). The truth table and the equation7 are shown in Figure 28 (c) and (d).

d1 d0s
y

(a)

s

d0

d1

y

(b)

s d1 d0 y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

(c)

y	 = s’d1’d0 + s’d1d0 + sd1d0’ + sd1d0

	 = s’d0(d1’ + d1) + sd1(d0’ + d0)

	 = s’d0 + sd1

(d)

Figure 28: A 2-to-1 multiplexer: (a) logic symbol; (b) circuit; (c) truth table; (d) equation.

Experiments

1. Implement the simplified 2-to-1 mux circuit as shown in Figure 28 (b), and confirm that it oper-

ates according to the truth table shown in Figure 28 (c). Connect the three inputs, s, d1, and d0, to 

three switches, and connect the output y to an LED.

7	 For an in-depth discussion on how to simplify Boolean equations and circuits, refer to the book 

“Digital Logic and Microprocessor Design with VHDL” by E. Hwang.



Global Specialties 46

Combinational Logic Design

2. Design the 2-to-1 mux circuit based on the truth table shown in Figure 28 (c) and without any 

simplifications. Implement your circuit and confirm that it operates according to the truth table.

3. A larger size mux is a 4-to-1 mux where there are four data inputs, d3, d2, d1 and d0. In order 

to select one of the four data inputs, two select lines, s1 and s0, are needed. When s1s0 = 00, data 

from d0 is passed to the output; when s1s0 = 01, data from d1 is passed to the output; when s1s0 = 

10, data from d2 is passed to the output; and When s1s0 = 11, data from d3 is passed to the output. 

Design a 4-to-1 mux circuit by first deriving the truth table and equation.

With six inputs, s1, s0, d3, d2, d1 and d0, the truth table will have 26 = 64 rows! I am sure you don’t 

want to write out this entire table. An easier way to reduce the size of the truth table is to not 

have the d input columns, but instead write out the d’s as entries under the output column. Using 

this method, the 2-to-1 mux truth table shown in Figure 28 (c) reduces to:

s y

0 d0

1 d1

From this simplified truth table, we can immediately obtain the simplified equation y = s’d0 + sd1. 

Applying this method for the 4-to-1 mux, we get the following simplified truth table:

S1 S0 y

0 0 d0

1 1 d1

1 0 d2

1 1 d3

	 and the equation will be y = s1’s0’d0 + s1’s0d1 + s1s0’d2 + s1s0d3.

Draw out the circuit from this equation, then implement your circuit and confirm that it works 

correctly.

4. Design and implement an 8-to-1 multiplexer. There should be 8 data input lines, 3 select lines 

and 1 output line. Since there are only 8 switches on the trainer, you can connect the three select 

lines directly to either VCC (for 1) or GND (for 0).
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4.5.	 Lab 5: Decoders

Purpose

In this lab you will learn about decoders. A decoder is used to select one among several devices or 

memory locations. You will design decoder and encoder circuits and implement them on the trainer.

Introduction

A decoder is another frequently used component in a digital circuit. The function of the decoder 

is to select one thing among several things.  For example, if you have an array of 16 memory loca-

tions and you want to read from one particular location, a decoder will be used to select which one 

of the 16 memory locations that you want to access. The logic symbol for a 2-to-4 decoder is shown 

in Figure 29 (a).

As implied by the name, 2-to-4 decoder, this component has two input lines, A1A0, which are the 

two address select lines for selecting one of the four output lines, Y3Y2Y1Y0. When the address lines 

A1A0=00, the output line Y0 will be selected; when the address lines A1A0=01, the output line Y1 will 

be selected; when the address lines A1A0=10, the output line Y2 will be selected; and when the ad-

dress lines A1A0=11, the output line Y3 will be selected. The selected output line will have a 1 value, 

while all of the remaining output lines will have 0’s. Given this description, you should now be able to 

derive the truth table and the circuit for a 2-to-4 decoder. The truth table and the circuit are shown 

in Figure 29 (b) and (c).

2-to-4 decoder
Y1 Y0Y3 Y2

A0A1

(a)

A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

(b)

A1

A0

Y0Y1Y2Y3

(c)

Figure 29: A 2-to-4 decoder: (a) logic symbol; (b) truth table; (c) circuit.

A variation of the 2-to-4 decoder has an extra enable (E) input line. When E is a 1, this decoder 

works exactly like the original. However, when the circuit is disabled with E set to 0, then it doesn’t 

matter what the address input lines are, all of the output lines will be a 0. The logic symbol, truth 

table, and the circuit for the 2-to-4 decoder with enable are shown in Figure 30.
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2-to-4 decoder
Y1 Y0Y3 Y2

A0A1
E

(a)

E A1 A0 Y3 Y2 Y1 Y0

0 × × 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

(b)

A1

A0

E

Y0Y1Y2Y3

(c)

Figure 30: A 2-to-4 decoder with enable: (a) logic symbol; (b) truth table; (c) circuit.

In addition to the 2-to-4 decoder, there are other sizes of decoders, namely, the 1-to-2 decoder 

and the 3-to-8 decoder. Both of these can have the variation of either having or not having the 

enable input line. The 3-to-8 decoder will have three address lines and eight output lines.

Experiments

1. Implement the 2-to-4 decoder circuit as shown in Figure 29 (c), and verify that it works accord-

ing to the truth table shown in Figure 29 (b). Connect the two inputs, A1, and A0, to two switches, 

and connect the outputs Y3, Y2, Y1, and Y0, to four LEDs.

2. Implement the 2-to-4 decoder with enable circuit as shown in Figure 30 (c), and verify that it 

works according to the truth table shown in Figure 30 (b).

3. Design and implement a 3-to-8 decoder.

4. Design and implement a 3-to-8 decoder with enable.
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4.6.	 Lab 6: Comparators

Purpose

In this lab you will learn about comparator circuits. Comparators are for comparing between two 

numbers to see if one number is less than, equal to, or greater than a second number. You will imple-

ment different comparator circuits and verify their operations.

Introduction

A comparator will output a 1 if the logical condition that it is testing for is true, and outputs a 0 if 

the condition is false. The simplest comparator is to compare whether a value is equal or not equal to 

a constant. The use of an AND gate is all that is needed for the equality comparator with a constant. 

For example, the circuit in Figure 31 (a) tests whether a 4-bit variable x is equal to the constant 3 or 

not. Since 3 in binary is 0011, therefore, with x3 and x2 inverted, the AND gate will output a 1 when x 

is equal to 0011. For all numbers other than 3, it will output a 0.  

F
x0

x1

x2

x3

(a)

F

x3y3x2y2x1y1x0y0

(b)

x3 x2 x1 x0 (x < 5)

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 × × × 0

	

(x < 5) = x3’x2’ + x3’x2x1’x0’

(x < 5)

x0x1x2x3

(c)

Figure 31: Simple 4-bit comparators for: (a) x = 3; (b) x ¹ y; (c) x < 5.

The XOR gate can be used for comparing inequality between two variables. Recall that the XOR 

gate outputs a 1 when its two input values are different. Hence, we can use one XOR gate for com-

paring each bit pair of the two operands. A 4-bit inequality comparator is shown in Figure 31 (b). 

Four XOR gates are used, with each one comparing the same position bit from the two operands. The 

outputs of the XOR gates are ORed together so that if any bit pair is different then the two operands 
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are different, and the resulting output is a 1.

For the greater-than or less-than relationships, we can construct a truth table and build the cir-

cuit from it. For example, to compare whether a 4-bit value x is less than five, we get the truth table 

shown in Figure 31 (c). The first five rows have a 1 output since their decimal values are equal to 0 to 

4 respectively. The remaining rows from 5 to 15 will all have a 0 output. The resulting simplified circuit 

8 is shown in Figure 31 (c).

Experiments

1. Design and implement a 4-bit comparator circuit that tests for the condition x = 7. Verify that 

it operates correctly.

2. Design and implement a 4-bit comparator circuit that tests for the condition x ≠ 7. Verify that 

it operates correctly.

3. Design and implement a 4-bit comparator circuit that tests for the condition x = y. Verify that 

it operates correctly.

4. Design and implement a 4-bit comparator circuit that tests for the condition (x = 7) AND (x = 

12). Verify that it operates correctly.

5. Design and implement a 4-bit comparator circuit that tests for the condition (x = 7) OR (x = 12). 

Verify that it operates correctly.

6. Design and implement a 4-bit comparator circuit that tests for the condition x ≤ 7. Verify that 

it operates correctly.

7. Design and implement a 4-bit comparator circuit that tests for the condition x ³ 7. Verify that 

it operates correctly.

8. Design and implement a 4-bit comparator circuit that tests for the condition (x = 3) AND (x ³ 7). 

Verify that it operates correctly.

8	For an in-depth discussion on how to simplify Boolean equations and circuits, refer to the book 

“Digital Logic and Microprocessor Design with VHDL” by E. Hwang.
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4.7.	 Lab 7: Full Adder

Purpose

In this lab you will learn about the full adder (FA) circuit. The full adder circuit is for adding two 

1-bit binary numbers with carry-in and carry-out. You will implement the circuit and verify its opera-

tions.

Introduction

Binary Numbers

Before we discuss the construction of the full adder, we need to talk about binary numbers. Binary 

numbers are positional numbers just like decimal numbers that you are very familiar with. In other 

words, the position of a digit or the position of a bit (in the case of binary numbers) denotes a specific 

value. For example, in the decimal number 38, the 3 actually has a higher value than the 8 because 

it is in the tens position whereas the 8 is in the ones position. For binary numbers we only use 0’s 

and 1’s instead of the ten digits for decimal numbers, and the base that we use is based-2 instead of 

based-10.

The value for the decimal number 238 is calculated as follows:

238
=  (2 ´ 102) + (3 ´ 101) + (8 ´ 100)
=  200 + 30 + 8
=  238

Similarly, the value for the binary number 100112 (the subscript 2 denotes that the number is a 

binary number) is calculated as follows:

100112

= (1 ´ 24) + (0 ´ 23) + (0 ´ 22) + (1 ´ 21) + (1 ´ 20)

= 16 + 0 + 0 + 2 + 1

= 19 in decimal

When adding and subtracting binary numbers, we carry and borrow a two instead of a ten. So 

when we add 1 + 1 in binary, we get a 102 instead of a 2.

The full adder circuit adds a 1-bit binary number with a second 1-bit number to produce a sum and 

a carry-out bit. The circuit also has a carry-in bit that allows it to be connected in series with other FA 

circuits. Consider the following addition of two 4-bit binary numbers

1 0 0 1

1 100+

0011
11

cincout

The full adder circuit is designed to only add one bit slice of the 4-bit number, for example, the bit 

slice that is outlined in the rectangle. In adding this bit slice, in addition to the two input operands, 
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there is also a carry-in bit (cin) from the previous bit slice. The result of the addition produces a sum 

bit and a carry-out bit (cout) for a carry to the next bit slice. The carry-in and carry-out bits allow the 

FA to pass bits from one bit position to the next bit position when several FAs are connected together 

in series. So in total, there are three input bits, first input operand (x), second input operand (y) and 

the carry-in (cin), and two output bits, carry-out (cout) and the sum (s). The logic symbol, truth table 

and the simplified circuit are shown in Figure 32 (a), (b) and (c) respectively.

FA

x y

cincout

s

(a)

x y cin cout s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 (b)

x y

cin

cout

s

2 2

3

3

2

(c)

Figure 32: The full adder (FA): (a) logic symbol; (b) truth table; (c) simplified circuit.

Experiments

1. Implement the full adder circuit shown in Figure 32 (c) and verify that it operates according to 

the truth table shown in Figure 32 (b).

2. Notice that the full adder circuit shown in Figure 32 (c) is much simplified. If you construct the 

circuit by picking out the 1’s rows in the output columns of the truth table, you will end up with 

a much larger circuit. Derive this larger circuit, then implement and verify that it operates accord-

ing to the truth table.

3. What should the value for cin be if all you want is to add the values of the two operands x and y?

4. Derive the truth table for a full subtractor circuit following the same way that the full adder 

was constructed. You will have three inputs, x, y and bin (for borrow in), and two outputs, bout (for 

borrow out) and d (for difference). The circuit performs the subtraction x – y to give d. A 1 for bin 

denotes that there is a borrow from the bit on the right side, and a 1 for bout denotes that this 

current bit needs to borrow from the bit on the left. So in essence, you are doing x – y – bin to give 

d, and if you need to borrow then set bout to a 1, otherwise bout is a 0. Keep in mind that you are 

working with binary numbers, so when you borrow, you get a 2 and not a 10. The first two rows 

of the truth table are shown next.

For the second row, you have 0 – 0 – 1, and x being a 0 is not enough, so you borrow by setting 

bout to a 1. When you borrow, you get a 2, so x now has a 2; and 2 – 0 – 1 = 1, so d is also a 1. Try to 

complete the truth table on your own before looking for the answers. The complete truth table 

is found in Experiment 5 of Lab 3.
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5. Implement the circuit from the truth table in Experiment 4, and verify that it operates correctly.

x y bin bout d

0 0 0 0 0
0 0 1 1 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1 .
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4.8.	 Lab 8: 4-bit Adder

Purpose

In this lab you will learn about the 4-bit adder circuit. This 4-bit adder circuit is for adding two 4-bit 

binary numbers producing a 4-bit sum and a carry-out. You will implement the circuit and verify its 

operations.

Introduction

There are different ways to design a 4-bit adder circuit, but one very easy to understand way is to 

simply connect four full adder circuits together in series as shown in Figure 33 (b). Each box with the 

label FA is a full adder circuit from Figure 32 (c), and repeated here in Figure 33 (c) for easy reference. 

The carry-out (cout) signal from each FA is connected to the carry-in (cin) signal of the next FA on the 

left side. The first carry-in signal (c0) is connected to a logic 0, and the final carry-out (cout) signal is the 

overflow signal for the complete 4-bit adder circuit. The two 4-bit operands are x and y, and the re-

sulting 4-bit sum from the adder is s. The subscripts for x, y, and s denote the bit position of the 4-bit 

number, e.g., x0 is bit zero or the first bit of operand x, and s3 is bit three or the fourth bit of s. The 

complete detailed schematic diagram is shown in Figure 34. This adder circuit is called a ripple-carry 

adder9 because of how the carry signal ripples through the chain of FAs.
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Figure 33: The 4-bit adder: (a) logic symbol; (b) circuit; (c) the FA circuit from Figure 32 (c).
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Figure 34: The complete detailed 4-bit adder circuit.

9	 The operation of the ripple-carry adder is relatively slow. A faster adder circuit is called the carry-

lookahead adder.
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A 4-bit adder will produce the correct sum only if the result is in the range from 0 (binary 0000) to 

15 (binary 1111). If the sum of the two numbers is greater than 15 then the overflow bit will be as-

serted, and the resulting sum bits will be incorrect. For example, 7 + 12 = 19, but since 19 is 10011 in 

binary, therefore, the four sum bits will be 0011. In order to get the correct result for 7 + 12, we need 

to use a 5-bit adder instead.

Experiments

1. Implement the circuit shown in Figure 34. You will need to have four FA circuits with their cin’s 

and cout’s connected together. Connect the 4-bit operand x3, x2, x1 and x0 to switches SW7 to SW4. 

Similarly connect the 4-bit operand y3, y2, y1 and y0 to switches SW3 to SW0. Connect the 4-bit 

sum s3, s2, s1 and s0 to LED3 to LED0. Connect the carry-in signal (cin) to GND. Connect the carry-out 

signal (cout) to LED7. Verify that your circuit does add two 4-bit binary numbers correctly. The fol-

lowing table lists some sample numbers that you might want to try. The numbers in parenthesis 

are the corresponding decimal numbers. Note that to be absolutely certain that your circuit works 

correctly, you need to test all possible input combinations.

Input Output
Observed Result

Operand x Operand y Carry-out cout Sum s

0010 (2) 0011 (3) 0 0101 (5)
0101 (5) 0100 (4) 0 1001 (9)
0110 (6) 1001 (9) 0 1111 (15)
0111 (7) 1100 (12) 1 0011 (16+3=19)
1001 (9) 1101 (13) 1 0110 (16+6=22)

 1111 (15) 1111 (15) 1 1110 (16+14=30)

2. What happens if the initial carry-in signal c0 is connected to a 1 instead of a 0?

3. How would you expand this 4-bit adder circuit to be an 8-bit adder circuit?

4. When you add 7 (0111) plus 12 (1100), you get a 1 for cout and the sum s is actually a 3 (0011).  

What do you need to do in order to actually get the correct binary value in the Sums output when 

you add 7 + 12?

5. How many bits do you need for an adder in order to produce the correct result for adding 16 

+ 16 and?



Ch. 4 Labs

www.globalspecialties.com57

4.9.	 Lab 9: 4-bit Adder/Subtractor

Purpose

In this lab you will learn about a 4-bit adder/subtractor circuit. This 4-bit adder/subtractor circuit is 

for both adding and subtracting two 4-bit binary numbers producing either a 4-bit sum or difference. 

You will implement the circuit and verify its operations.

Introduction

It turns out that with very minimal modifications to the 4-bit adder circuit from Figure 33 (b), you 

can get it to subtract numbers as well. This simple and elegant solution is a direct result of how nega-

tive numbers are represented inside computers.

Negative Binary Numbers

Binary numbers can be interpreted as either signed or unsigned. Unsigned numbers include only 

positive numbers and zero, whereas signed numbers include positive, negative, and zero. Given a 

binary number such as 011010012, the computer does not know whether it is a signed or unsigned 

number. It is up to you, the designer, to decide how you want to interpret it. If you say that this binary 

number represents an unsigned number, then the decimal value of this number would be

	 011010012

= (0 x 27) + (1 x 26) + (1 x 25) + (0 x 24) + (1 x 23) + (0 x 22) + (0 x 21) + (1 x 20)

= (1 x 26) + (1 x 25) + (1 x 23) + (1 x 20)

= 64 + 32 + 8 + 1

= 105 in decimal

(Notice that the power x used in 2x denotes the position of the bit in the binary number. The first 

bit of the binary number starting from the right hand side is position 0; the second bit to the left is 

position 1; etc.)

If you say that this same binary number 011010012 represents a signed number, then the decimal 

value of this number would be evaluated differently. For signed numbers, the most significant bit 

(MSB) which is the left-most bit, tells whether the number is positive or negative. If the most signifi-

cant bit is a 0, then the number is positive, and the value of this positive signed number is obtained 

exactly as for unsigned numbers. So if we interpret 011010012 as a signed number, we would get the 

same decimal value 105.

However, if the most significant bit of a signed number is a 1, then the number is negative, and we 

use what is referred to as the two’s complement method to determine its value. The 2’s complement10 

is a method for representing negative or signed numbers, and it involves three steps to determine the 

value. In step 1, you flip all the 1 bits in the binary number to 0’s and all the 0 bits to 1’s. In step 2, you 

add a 1 to the result obtained from step 1. Finally, for step 3, interpret the binary number obtained 

in step 2 as an unsigned number, and determine its value. The negative of this resulting value is the 

value of the original negative signed number.

10	 Sometimes two’s complement is also written as 2’s complement.
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For example, if we say that the binary number 111010012 represents a signed number, then we 

would have to do the following to determine its value. First we note that the MSB is a 1 so we know 

that it is a negative number. To determine the value of a negative number, we perform the three 

steps for the 2’s complement process.

Starting with this number:		  11101001

Step 1, flip the bits:		  00010110

Step 2, add a one to the number from step 1:		  00010111

Step 3, determine the value of the number from step 2: (1 x 24) + (1 x 22) + (1 x 21) + (1 x 20)

		  =  16 + 4 + 2 + 1

		  =  23

Therefore, the value for the signed number 111010012 is –23.

To find the 2’s complement binary representation of a negative number, we start with the positive 

binary representation and then perform only the first two steps in the process. For example, to find 

the 2’s complement binary representation for –35, we start with the binary representation for +35.

Starting with +35:		  00100011

Step 1, flip the bits:		  11011100

Step 2, add a one to the number:	 11011101

Therefore, 110111012 is the 2’s complement representation for –35. You can verify that this is in-

deed correct by performing the three step process again.

Subtractor Circuit

Now that we understand how negative numbers are represented, we are ready to design the 

subtractor circuit. We know from algebra that subtracting a positive number is the same as adding 

the negative of the number. So using this fact, we can use the 4-bit adder to do subtraction simply by 

changing the second number to its negative equivalent. In other words, we simply perform the first 

two steps (“flip the bits” and “add a 1”) in the 2’s complement process to convert the second number 

to its negative value, and then pass this negative number to the adder circuit. The interesting trick is 

that these two steps can be easily done at two different places in the circuit. First, we can flip the bits 

by using a NOT gate for every bit of the second number. Second, remember that setting c0 to a 1 in 

the FA adds an extra one to the sum, and since the addition of a 1 can occur anytime during the ad-

dition process, therefore we can add the 1 simply by setting c0 to a 1 instead of the original 0. Hence, 

we obtain the subtractor circuit shown in Figure 35.
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Figure 35: The 4-bit subtractor circuit.

Notice that there is an extra XOR gate whose inputs are connected to c3 and cout. The output from 

this XOR gate indicates whether there is an overflow or not for signed numbers. The cout signal alone 

only indicates an overflow for unsigned numbers. Whether you want to consider the status of the 

unsigned overflow bit or the signed overflow bit depends on how you want to interpret the input 

numbers. If you want to interpret your input numbers as unsigned numbers then you need to only 

look at the unsigned overflow bit to determine whether there is an overflow or not. On the other 

hand, if you interpret your input numbers as signed numbers then you need to only look at the signed 

overflow bit.

The complete detailed schematic diagram for the 4-bit subtractor circuit is shown in Figure 36.
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Figure 36: The complete detailed 4-bit subtractor circuit.
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In Figure 36, the XOR gate for generating the signed_overflow signal has been replaced by a 4-in-

put OR gate, two 4-input AND gates and two NOT gates. Recall from Lab 2, Experiment 4, that this 

circuit is equivalent to a XOR gate. The only reason for doing this is that we have used up all of the 

XOR gates on the trainer.

Adder/Subtractor Circuit

One enhancement that we can make to the subtractor circuit is to replace the NOT gates with 

2-input XOR gates. One input to the XOR gate is connected to the second operand just like with the 

NOT gate, but the second input to all of the XOR gate are connected to a common select signal s, as 

shown in Figure 37.
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Figure 37: The 4-bit adder/subtractor combination circuit.

The select signal is also connected to c0. With this change, the circuit can now perform both addi-

tions and subtractions depending on the select signal s. When s is 0, c0 will be 0, and with one input 

of the XOR gate being a 0, the bit at the second input will pass unchanged to the output (refer to 

the XOR gate truth table to see that this is so). Therefore, the circuit will perform an addition when s 

is a 0. When s is 1, c0 will be 1, and with one input of the XOR gate being a 1, the output will be the 

inverse of the bit at its second input. Therefore, the circuit will perform a subtraction when s is a 1. 

Just like the subtractor circuit, there is an extra XOR gate connected to c3 and cout to indicate whether 

there is an overflow or not for signed numbers. If you need to add more bits to the adder/subtrac-

tor circuit, you simply have to daisy chain more of the FA bit slices. The complete detailed schematic 

diagram for the 4bit adder/subtractor circuit is shown in Figure 38.
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Figure 38: The complete detailed 4-bit adder/subtractor circuit.

Experiments

1. Implement the circuit shown in Figure 36. You will need to have four FA circuits with their cin’s 

and cout’s connected together. Connect the 4-bit operand a (a3 to a0) to switches SW7 to SW4. Con-

nect the 4-bit operand b (b3 to b0) to switches SW3 to SW0. Connect the 4-bit result f (f3 to f0) to 

LED3 to LED0. Connect the carry-out signal (cout) to LED7. Verify that your circuit does subtract 

two 4-bit binary numbers correctly. The following table lists some sample numbers that you might 

want to try. The numbers in parenthesis are the corresponding decimal numbers.

Input Output
Observed Result

Operand x Operand y
unsigned-
overflow

signed-
overflow

Difference f

0011 (3) 0010 (2) 1 0 0001 (1)
0011 (3) 0011 (3) 1 0 0000 (0)
0010 (2) 0011 (3) 0 0 1111 (-1)
0111 (7) 0100 (4) 1 0 0011 (3)
1001 (-7) 1101 (-3) 0 0 1100 (-4)
1111 (-1) 1111 (-1) 1 0 0000 (0)
1000 (-8) 0011 (3) 1 1 0101 (5)
1000 (-8) 0111 (7) 1 1 0001 (1)

2. In the first row of the table for Experiment 1 where you performed 3 – 2, the unsigned over-

flow bit is a 1 because you are actually doing 3 + (-2) which is 0011 + 1110. If you interpret these 

as unsigned numbers, then you are really adding 3 + 14 = 17, and 17 cannot be represented as a 

4-bit unsigned value!
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3. Implement the circuit shown in Figure 38. Verify that your circuit does either add or subtract 

two 4-bit binary numbers correctly. The following table lists some sample numbers that you might 

want to try. The numbers in parenthesis are the corresponding decimal numbers.

Input Observed Output
Observed 

Results Operand x Operand y
unsigned-
overflow

signed-
overflow

Sum/Difference f

0 0000 (0) 0000 (0) 0 0 0000 (0)

0 0011 (3) 0010 (2) 0 0 0101 (5)

0 0011 (3) 0011 (3) 0 0 0110 (6)

0 0010 (2) 0011 (3) 0 0 0101 (5)

0 0101 (5) 0100 (4) 0 1 1001 (-7)

0 0101 (5) 1001 (-7) 0 0 1110 (-2)

0 0111 (7) 1001 (-7) 1 0 0000 (0)

0 1001 (-7) 1001 (-7) 1 1 0010 (2)

0 1111 (-1) 1111 (-1) 1 0 1110 (-2)

0 1000 (-8) 1101 (-3) 1 1 0101 (5)

1 0000 (0) 0000 (0) 1 0 0000 (0)

1 0011 (3) 0010 (2) 1 0 0001 (1)

1 0011 (3) 0011 (3) 1 0 0000 (0)

1 0010 (2) 0011 (3) 0 0 1111 (-1)

1 0101 (5) 0100 (4) 1 0 0001 (1)

1 0101 (5) 1001 (-7) 0 0 1110 (-2)

1 1001 (-7) 1001 (-7) 1 0 0000 (0)

1 0111 (7) 1001 (-7) 0 1 1110 (-2)
1 1111 (-1) 1111 (-1) 1 0 0000 (0)
1 1000 (-8) 1101 (-3) 0 0 1011 -(5)
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4.10.	 Lab 10: 2-bit Arithmetic and Logic Unit (ALU)

Purpose

In this lab you will learn about the Arithmetic and Logic Unit (ALU). This is the main component 

inside the microprocessor for performing simple logical and arithmetic operations. The logical opera-

tions are like those of the basic logic gates such as the AND, OR and NOT. The arithmetic operations 

are just simple additions and subtractions. More complex arithmetic operations such as multiply and 

divide are done in other dedicated components. You will design a 2-bit ALU, implement the circuit, 

and verify its operations.

Introduction

Like with most circuits, there are many ways of designing the ALU circuit. One method is to do 

something similar to what we did with the adder/subtractor circuit in Lab 8 by starting out with the 

basic layout of connecting several full adders (FA) together in series. And just like for the adder/sub-

tractor circuit, we will modify the two operand inputs to the FA appropriately so that the FAs will 

produce the correct results.

For doing additions and subtractions, we will modify the second (y) operand to the FAs doing 

something similar to the XOR gate that was used in the adder/subtractor circuit, but with some slight 

modifications. We will label this sub-circuit black box the AE for Arithmetic Extender.

For doing logical operations, we need to do something a little more extensive. After all, you re-

member that the FAs can only add numbers, and you saw in Lab 8 how you could use the FAs to both 

add and subtract numbers. However, the FAs cannot do logical operations, so what we will need to do 

is to have another sub-circuit to perform the actual logical operations and then pass the result of the 

logical operations through the FAs to the output. So for logical operations, we do not want the FAs 

to modify the number that is being passed through its first (x) operand, and the way to do this is to 

have the FAs add a 0 to the number. We will label this sub-circuit black box the LE for Logic Extender.

Furthermore, depending on the operation that we want to perform, the initial carry-in signal, c0, 

has to be set appropriately. In the design, this is done by the Carry Extender, CE, black box.

Select lines are needed to tell the ALU which one of several operations to perform. If we want 

the ALU to be able to perform four operations, we will need two select lines, s1 and s0, because two 

bits will give four different combinations (00, 01, 10 and 11). Since the outputs of the LE, AE and CE 

are dependent on which operation we want to perform, therefore, the select lines are also inputs to 

these three boxes.
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Figure 39: The 2-bit ALU circuit.

The overall circuit for the 2-bit ALU is shown in Figure 39. If you compare this circuit with the ad-

der/subtractor circuit in Figure 35 (b), you will see that they are very similar except for the three added 

black boxes, LE, AE and CE. And just like with the adder/subtractor circuit, to add more bits to the ALU 

you simply have to add more of the FA bit slices.

What we now need to do is to come up with the three circuits for the LE, AE, and the CE. The con-

structions of these circuits, of course, will be dependent on what operations we want to implement, 

and the way to do it is the same as designing any other combinational circuits. As an example, we will 

design an ALU that can perform four operations: addition, subtraction, AND, and OR. Following the 

steps for designing a combinational circuit as outlined in Lab 2, we will first come up with the truth 

table for each of these three circuits, and then from the truth tables, we can derive the circuits for 

them.

We start with the operational specifications for our ALU as shown in Figure 40 (a). Note that the 

assignment of which operation is assigned to which selection combination is arbitrary. So for the 

combination s1s0 = 00, we will perform the addition of A + B. And just like for the adder/subtractor 

circuit, we want the first operand to the FA to be A and the second operand to the FA to be B, thus, 

the LE will output ai (the ith bit of A) and the AE will output bi (the ith bit of B). Recall from the adder/

subtractor circuit that for addition, we want the initial carry-in c0 to be a 0, hence CE will output a 0.

For the combination s1s0 = 01, we will perform the subtraction of A – B. Recall from the adder/sub-

tractor circuit that for subtraction, we need to invert the second operand B and then add a 1 through 

the initial carry-in c0. Hence the AE will output bi’ and the CE will output a 1.
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s1 s0 Operation Name Operation xi (LE) yi (AE) c0 (CE)

0 0 Addition A + B ai bi 0
0 1 Subtraction A – B ai bi’ 1
1 0 Logical AND A AND B ai AND bi 0 0
1 1 Logical OR A OR B ai OR bi 0 0
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0 0 1 1 1
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Figure 40: ALU operations: (a) function table; (b) LE truth table; (c) AE truth table; (d) CE truth 
table.

For the two logical operations, the actual operation will be performed in the LE, so the LE will 

output the result of the respective logical operation. So for the combination s1s0 = 10 where the ALU 

will perform the logical AND operation, the LE will output the result of ai AND bi. Similarly, for the 

combination s1s0 = 11 where the ALU will perform the logical OR operation, the LE will output the 

result of ai OR bi. For all logical operations, we do not want the FAs to add anything, so the AE, which 

outputs to the second operand of the FA, should output a 0. Similarly, the CE should output a 0.

So from the above analysis, we are able to come up with the three truth tables for the LE, AE and 

CE as shown in Figure 40 (b), (c) and (d) respectively. Given these three truth tables for the LE, AE and 
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CE, you should now be able to derive their respective circuits. Try to first work it out on your own 

before looking at the solutions given in Figure 41. Note that you may come up with a different circuit 

from what is given in Figure 41, but that doesn’t mean that you are wrong because there can be many 

different possible solutions for the same truth table. The complete 2-bit ALU circuit for performing 

the four operations is shown in Figure 42.
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Figure 41: ALU extender circuits: (a) logic extender (LE); (b) arithmetic extender (AE); (c) carry 
extender (CE).
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Figure 42: The complete 2-bit ALU circuit for performing addition, subtraction, AND, and OR.
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Experiments

1. Implement the 2-bit ALU circuit shown in Figure 42. You will need to have two FA circuits with 

their cin’s and cout’s connected together. For each x input to the FA, you will need to connect the 

output of the LE circuit to it. Similarly, for each y input to the FA, you will need to connect the 

output of the AE circuit to it. Connect the output of the CE circuit to c0. Connect the 2-bit oper-

and a to switches SW3 and SW2. Connect the 2-bit operand b to switches SW1 and SW0. Con-

nect the 2-bit result f to LED1 and LED0. Connect the unsigned-overflow signal to LED3, and the 

signed-overflow signal to LED4. In the circuit diagram, the numbers inside each gate denote the 

corresponding component number on the board to help in debugging. These numbers are for 

reference only. Verify that your ALU circuit does perform the four different operations as given in 

the table in Figure 40 (a) correctly. Record your results and compare your results with the follow-

ing table. The four bits (e.g. 0-0-00) in the entries denote, from left to right, the signed-overflow 

bit, unsigned-overflow bit, f1, and f0.

Operand
a

Operand
b

a + b
s = 00

a – b
s = 01

a AND b
s = 10

a OR b
s = 11

00

00 0-0-00 0-1-00 0-0-00 0-0-00
01 0-0-01 0-0-11 0-0-00 0-0-01
10 0-0-10 1-0-10 0-0-00 0-0-10
11 0-0-11 0-0-01 0-0-00 0-0-11

01

00 0-0-01 0-1-01 0-0-00 0-0-01
01 1-0-10 0-1-00 0-0-01 0-0-01
10 0-0-11 1-0-11 0-0-00 0-0-11
11 0-1-00 1-0-10 0-0-01 0-0-11

10

00 0-0-10 0-1-10 0-0-00 0-0-10
01 0-0-11 1-1-01 0-0-00 0-0-11
10 1-1-00 0-1-00 0-0-10 0-0-10
11 1-1-01 0-0-11 0-0-10 0-0-11

11

00 0-0-11 0-1-11 0-0-00 0-0-11
01 0-1-00 0-1-10 0-0-01 0-0-11
10 1-1-01 0-1-01 0-0-10 0-0-11
11 0-1-10 0-1-00 0-0-11 0-0-11

2. Design and implement a 2-bit ALU having the following functions:

s1 s0 Operation Name Operation

0 0 Increment A + 1
0 1 Decrement A – 1
1 0 Addition A + B
1 1 Subtraction A – B
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3. Design and implement a 2-bit ALU having the following functions:

s1 s0 Operation Name Operation

0 0 Pass A through A
0 1 Pass B through B
1 0 Logical NOT NOT A
1 1 Logical NAND A NAND B

4. Design a 4-bit ALU having the following functions:

s1 s0 Operation Name Operation

0 0 Pass A through A
0 1 Addition A + B
1 0 Subtraction A – B
1 1 Increment A + 1

5. Design a 4-bit ALU having the following functions:

s2 s1 s0 Operation Name Operation

0 0 0 Pass A through A
0 0 1 Addition A + B
0 1 0 Subtraction A – B
0 1 1 Increment A + 1
1 0 0 Decrement A – 1
1 0 1 Logical AND A AND B
1 1 0 Logical OR A OR B
1 1 1 Logical NOT NOT A
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4.11.	 Lab 11: BCD to 7-segment LED Decoder

Purpose

In this lab you will learn how to construct a Binary-Coded-Decimal (BCD) to 7-segment LED display 

decoder circuit. This circuit converts a 4-bit binary number to cause a 7-segment LED display to show 

the corresponding decimal digit. You will implement the circuit and verify its operation.

Introduction

BCD is the name given for the 4-bit binary representation of the ten decimal digits. Only the first 

ten combinations of the 4-bit binary number (from 0000 to 1001) are used as shown in the first two 

columns (Inputs and Decimal Digit) of the table in Figure 43. For each one of these ten binary combi-

nations, the corresponding decimal digit is to be shown on the 7-segment LED display as shown in the 

Display column of the table in Figure 43.

Each LED segment in the 7-segment display has a letter name (from a to g) given to it as shown 

in the header of the last seven columns in Figure 43. Hence, to display the decimal digit 0, we want 

segments a, b, c, d, e and f to be turned on, while segment g is turned off. Similarly, to display the 

decimal digit 1, we want only segments b and c to be turned on, while the remaining segments are 

turned off. Continuing on in this fashion, we obtain the rest of the truth table for the seven individual 

segments as shown in the last seven columns of the table in Figure 43.

 The remaining six binary combinations (from 1010 to 1111) are not used in the BCD to 7-segment 

decoder, therefore, it does not matter what those values are. The x symbol is used to denote the 

“don’t care” value of a variable.

Inputs Decimal
Digit Display

a b c d e f g
i3 i2 i1 i0

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 2 1 1 0 1 1 0 1

0 0 1 1 3 1 1 1 1 0 0 1

0 1 0 0 4 0 1 1 0 0 1 1

0 1 0 1 5 1 0 1 1 0 1 1

0 1 1 0 6 1 0 1 1 1 1 1

0 1 1 1 7 1 1 1 0 0 0 0

1 0 0 0 8 1 1 1 1 1 1 1

1 0 0 1 9 1 1 1 0 0 1 1

Rest of the Combinations × × × × × × ×

Figure 43: Design and truth table for the BCD to 7-segment LED decoder. X denotes  0 or a 1.
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Having completed the truth table for the decoder, we can continue with the design by deriving 

the equations and drawing the circuits for each of the seven segments. As discussed in Lab 2, given 

any truth table, we can produce a circuit for it by simply ANDing the inputs of a row for which the 

output of that row is a 1, and then ORing the outputs of all the AND gates together. Looking at the 

column in the truth table for segment a, we note that there are eight 1’s. Hence we obtain the fol-

lowing Boolean equation.

a = i3’i2’i1’i0’ + i3’i2’i1i0’ + i3’i2’i1i0 + i3’i2i1’i0 + i3’i2i1i0’ + i3’i2i1i0 + i3i2’i1’i0’ + i3i2’i1’i0

To implement the circuit for segment a based on this equation would require four NOT gates, 

eight 4-input AND gates and one 8-input OR gate. However, we can get a much smaller circuit by sim-

plifying the equation. The K-map for simplifying the Boolean equation for segment a is shown next.

01

1

1

00

00

01

i1i0a
10

1 1

1 1

11

1 1

11

10

i3i2

× × × ×

××

i1

i3

i2i0

i2'i0'

The x’s are also placed in the K-map. Each x can either be considered as a 1 if it helps to make a 

larger subcube, or it can be considered as a 0 and be ignored if it doesn’t help to make a larger sub-

cube. In this K-map for segment a, all of the x’s are taken to be a 1. From evaluating the above K-map 

for segment a, we obtain the following simpler equation for segment a

				    a = i3 + i1 + i2’i0’ + i2i0 = i3 + i1 + (i2  i0)

Proceeding in a similar manner, we get the following remaining six simplified equations for seg-

ments b, c, d, e, f and g.

	 b = i2’ + (i1  i0)

	 c	 = i2 + i1’ + i0

	 d	= i1i0’ + i2’i0’ + i2’i1 + i2i1’i0

				    e	= i1i0’ + i2’i0’

				    f	 = i3 + i2i1’ + i2i0’ + i1’i0’

				    g	= i3 + (i2 Å i1) + i1i0’
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Based on these seven simplified equations, we obtain the circuit as shown in Figure 44.

a

b

c

d

e

f

g

i1 i0i2i3

12 11 10

10

11

6

8

4

7

5

4

5

6

8

7

8

6

8

9

10

11

8

7

12

12

SW7 SW6 SW5 SW4

Figure 44: Reduced circuit for the BCD to 7-segment LED decoder.

Experiments

1. Implement the BCD to 7-segment LED display decoder circuit as shown in Figure 44. Connect 

the four inputs i3, i2, i1, i0 to the four switches SW7, SW6, SW5 and SW4 respectively, and connect 

the seven outputs a, b, c, d, e, f, g to the 7-segment LED display. Notice that the output of NOT 

gate number 10 needs to connect to seven inputs. Since there are only six wire connection points, 

you can make one connection to the breadboard to give you more connection points. The XNOR 

gate can be obtained by connecting a NOT gate to the output of the XOR gate. In the schematic 

diagram it is the XOR gate number 10 connected to the NOT gate number 6, and the XOR gate 

number 11 connected to the NOT gate number 8. Verify that it operates correctly according to 

the table in Figure 43.

2. Implement the BCD to 7-segment LED display decoder circuit based directly from the original 

truth table shown in Figure 43 and without doing any simplifications. Verify that it operates cor-

rectly according to the table in Figure 43.

3. Recall from Experiment 4 of Lab 2 that you can get the same functional circuit by selecting the 
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rows in the truth table where the output is a 0 instead of a 1 and then inverting the final output. 

By doing this, you might get a smaller circuit. Use this method to design the circuit for the truth 

table in Figure 43. Do you get a smaller circuit than the one in Figure 44?

4. Instead of the BCD to 7-segment decoder where only ten of the 16 combinations are used, we 

can build a complete 4-bit to 7-segment hexadecimal LED display decoder where we decode all of 

the 16 combinations of the 4-bit binary number. Figure 45 shows the initial design table. Complete 

the design of this 4-bit to 7-segment hexadecimal LED display decoder circuit and implement it.

Inputs Decimal

Digit Display
a b c d e f g

i3 i2 i1 i0

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 2 1 1 0 1 1 0 1

0 0 1 1 3 1 1 1 1 0 0 1

0 1 0 0 4 0 1 1 0 0 1 1

0 1 0 1 5 1 0 1 1 0 1 1

0 1 1 0 6 1 0 1 1 1 1 1

0 1 1 1 7 1 1 1 0 0 0 0

1 0 0 0 8 1 1 1 1 1 1 1

1 0 0 1 9 1 1 1 0 0 1 1

1 0 1 0 A 1 1 1 0 1 1 1

1 0 1 1 B 0 0 1 1 1 1 1

1 1 0 0 C 1 0 0 1 1 1 0

1 1 0 1 D 0 1 1 1 1 0 1

1 1 1 0 E 1 0 0 1 1 1 1

1 1 1 1 F 1 0 0 0 1 1 1

Figure 45: Design of the 4-bit to 7-segment hexadecimal LED display decoder.
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