Digital Storage Oscilloscope

SEFRAM 5472DC / 54102DC / 54152DC

USER MANUAL

M54X2DC A 00
Table of Contents

SAFETY INSTRUCTIONS 11
Safety Symbols..11
Safety Guidelines..12
Power cord for the United Kingdom......................16

GETTING STARTED... 17
Main Features...17
Panel Overview..19
Front Panel..19
Rear Panel...24
Display..25
Setting up the Oscilloscope..............................27

QUICK REFERENCE....................................... 30
Menu Tree and Shortcuts.................................30
CH1/CH2 key..31
Cursor key 1/2..33
Cursor key 2/2..33
Display key...35
Autoset key..35
Hardcopy key..36
Help key...36
Horizontal menu key......................................36
Math key 1/2 (+/-/x)......................................38
TABLE OF CONTENTS

Math key 2/2 (FFT/FFT rms)	.. 39
Measure key	.. 40
Run/Stop key	.. 40
Save/Recall key 1/10	.. 41
Save/Recall key 2/10	.. 41
Save/Recall key 3/10	.. 42
Save/Recall key 4/10	.. 42
Save/Recall key 5/10	.. 44
Save/Recall key 6/10	.. 44
Save/Recall key 7/10	.. 45
Save/Recall key 8/10	.. 45
Save/Recall key 9/10	.. 47
Save/Recall key 10/10	.. 47
Trigger key 1/6	.. 49
Trigger key 2/6	.. 49
Trigger key 3/6	.. 51
Trigger key 4/6	.. 51
Trigger key 5/6	.. 53
Trigger key 6/6	.. 53
Utility key 1/11 (Utility #1)	.. 54
Utility 2/11 (Utility #2)	.. 54
Utility key 3/11 (Utility #3)	.. 55
Utility key 4/11 (Hardcopy -Save All)	.. 55
Utility key 5/11 (Hardcopy -Printer)	.. 56
Utility key 6/11 (Hardcopy -Save Image)	.. 56
Utility key 7/11 (Probe compensation)	.. 57
Utility key 8/11 (Go-NoGo)	.. 57
Utility key 9/11 (Data Logging 1/2)	.. 58
Utility key 10/11 (Data Logging 2/2)	.. 58
Utility key 11/11 (Self CAL Menu)	.. 59
Default Settings	.. 60
MEASUREMENT ... 63

Basic Measurements .. 63
 Activating a channel .. 63
 Using Autoset ... 64
 Running and stopping the trigger 66
 Changing the horizontal position and scale 67
 Changing the vertical position and scale 68
 Using the probe compensation signal 70

Automatic Measurements 72
 Measurement items .. 72
 Automatic measurement gating 74
 Automatically measuring the input signals 76

Cursor Measurements .. 79
 Using the horizontal cursors 79
 Using the vertical cursors 80

Math Operations .. 81
 Overview ... 82
 Adding, subtracting or multiplying signals 83
 Using the FFT function 84

Go No-Go Testing .. 86
 Overview ... 86
 Edit: NoGo When .. 88
 Edit: Source .. 88
 Edit: NoGo Violation Conditions 90
 Edit: Template (boundary) 90
 Run Go-NoGo Tests ... 95

Data Logging .. 96
Overview ... 96
Edit: Source ... 97
Edit: Setup Parameters ... 97
Run Data logging .. 99

CONFIGURATION ... 100

Acquisition ... 100
 Selecting the acquisition mode ... 100
 Selecting Delay mode ... 102
 Real time vs Equivalent time sampling mode ... 104

Display .. 105
 Selecting vector or dot drawing .. 105
 Accumulating the waveform ... 105
 Adjusting the display contrast .. 106
 Selecting the display grid .. 106

Horizontal View .. 108
 Moving the waveform position horizontally ... 108
 Selecting the horizontal scale ... 108
 Selecting the waveform update mode ... 109
 Zooming the waveform horizontally .. 111
 Viewing waveforms in the X-Y mode .. 113
 Horizontal Adjustment Menu .. 115

Vertical View (Channel) ... 117
 Moving the waveform position vertically .. 117
 Selecting the vertical scale .. 117
 Selecting the coupling mode ... 117
 Expand Vertical Scale Center / Ground ... 118
 Inverting the waveform vertically ... 119
 Limiting the waveform bandwidth ... 121
 Probe attenuation level and type .. 121
Trigger ... 123
 Trigger type ... 123
 Trigger parameter ... 123
 Configuring Holdoff .. 126
 Configuring the edge trigger ... 126
 Configuring the video trigger ... 128
 Configuring the pulse width trigger ... 129
 Manually triggering the signal ... 131
Rear Panel USB Port Interface ... 132
Remote Control Interface .. 133
System Settings .. 135
 Viewing the system information .. 135
 Selecting the language .. 135
SAVE/RECALL ... 137
File Structures ... 137
 Display image file format ... 137
 Waveform file format ... 137
 Setup file format ... 137
 Using the USB file utilities .. 140
Quick Save (HardCopy) ... 143
Save ... 145
 File type/source/destination .. 145
 Saving the panel settings ... 146
 Saving the waveform ... 147
 Saving the display image .. 150
 Saving all (panel settings, display image, waveform) 152
Recall .. 154
File type/source/destination ... 154
Recalling the default panel settings 155
Recalling a reference waveform to the display 157
Recalling panel settings .. 157
Recalling a waveform ... 158
Recall Image ... 160

PRINT ... 162
Print (Hardcopy) ... 162

MAINTENANCE .. 166
Vertical Resolution Calibration ... 166
Probe Compensation ... 167

FAQ .. 169
The input signal does not appear in the display 169
I want to remove some contents from the display ... 169
The waveform does not update (frozen) 171
The probe waveform is distorted 171
Autoset does not catch the signal well 171
I want to clean up the cluttered panel settings 171
The saved display image is too dark on the background ... 171
The accuracy does not match the specifications 173
The oscilloscope will not allow a 2M waveform to be saved .. 173

APPENDIX .. 174
Fuse Replacement .. 174
Specifications .. 176
 Model-specific specifications ... 176
 Common specifications .. 178

Probe Specifications .. 182
 Probe for 5472DC .. 182
 Probe for 54102DC ... 183
 Probe for 54152DC ... 184

Dimensions ... 185

EC Declaration of Conformity .. 186
SAFETY INSTRUCTIONS

This chapter contains important safety instructions that should be followed when operating and storing the oscilloscope. Read the following before any operation to ensure your safety and to keep the oscilloscope in the best condition.

Safety Symbols

These safety symbols may appear in this manual or on the oscilloscope.

⚠️ WARNING Warning: Identifies conditions or practices that could result in injury or loss of life.

⚠️ CAUTION Caution: Identifies conditions or practices that could result in damage to the oscilloscope or to other objects or property.

⚠️ DANGER High Voltage

⚠️ Attention: Refer to the Manual

⚠️ Protective Conductor Terminal

⚠️ Earth (Ground) Terminal
Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.

Safety Guidelines

General Guideline

- Make sure the BNC input voltage does not exceed 300V peak.
- Never connect a hazardous live voltage to the ground side of the BNC connectors. It might lead to fire and electric shock.
- Do not place heavy objects on the oscilloscope.
- Avoid severe impact or rough handling that may damage the oscilloscope.
- Avoid discharges of static electricity on or near the oscilloscope.
- Use only mating connectors, not bare wires, for the terminals.
- Do not block the cooling fan vent.
- Do not perform measurements at power sources and building installation sites (Note below).
- The oscilloscope should only be disassembled by a qualified technician.
(Measurement categories) EN 61010-1:2001 specifies the measurement categories and their requirements as follows. The SEFRAM 53X2DC series falls under category II.

- Measurement category IV is for measurement performed at the source of a low-voltage installation.
- Measurement category III is for measurement performed in a building installation.
- Measurement category II is for measurement performed on circuits directly connected to a low voltage installation.
- Measurement category I is for measurements performed on circuits not directly connected to Mains.

Power Supply

- AC Input voltage: 100 ~ 240V AC, 47 ~ 63Hz
- The power supply voltage should not fluctuate more than 10%.
- Connect the protective grounding conductor of the AC power cord to an earth ground.

Fuse

- Fuse type: T1A/250V
- To ensure fire protection, replace the fuse only with the specified type and rating.
- Disconnect the power cord before replacing the fuse.
- Make sure the cause of fuse blowout is fixed before replacing the fuse.

Cleaning the oscilloscope

- Disconnect the power cord before cleaning the oscilloscope.
- Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid into the oscilloscope.
- Do not use chemicals containing harsh products such as benzene, toluene, xylene, and acetone.
Operation Environment

- Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)
- Relative Humidity: $\leq 80\%$, $40^\circ C$ or below
 $\leq 45\%$, $41^\circ C$–$50^\circ C$
- Altitude: $< 2000m$
- Temperature: $0^\circ C$ to $50^\circ C$

(Pollution Degree) EN 61010-1:2001 specifies pollution degrees and their requirements as follows. The oscilloscope falls under degree 2.

Pollution refers to “addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity”.

- Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
- Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected.
- Pollution degree 3: Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.

Storage environment

- Location: Indoor
- Storage Temperature: -10$^\circ C$–60$^\circ C$, no condensation-
- Relative Humidity: 93% @ 40$^\circ C$
 65% @ 41$^\circ C$–60$^\circ C$
Disposal

Do not dispose this instrument as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.
Power cord for the United Kingdom

When using the oscilloscope in the United Kingdom, make sure the power cord meets the following safety instructions.

NOTE: This lead/appliance must only be wired by competent persons

WARNING: THIS APPLIANCE MUST BE EARTHED

IMPORTANT: The wires in this lead are coloured in accordance with the following code:

- **Green/ Yellow:** Earth
- **Blue:** Neutral
- **Brown:** Live (Phase)

As the colours of the wires in main leads may not correspond with the coloured marking identified in your plug/appliance, proceed as follows:

The wire which is coloured Green & Yellow must be connected to the Earth terminal marked with either the letter E, the earth symbol ⬤ or coloured Green/Green & Yellow.

The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.

The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.

If in doubt, consult the instructions provided with the equipment or contact the supplier.

This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, a cable of 0.75mm² should be protected by a 3A or 5A fuse. Larger conductors would normally require 13A types, depending on the connection method used.

Any exposed wiring from a cable, plug or connection that is engaged in a live socket is extremely hazardous. If a cable or plug is deemed hazardous, turn off the mains power and remove the cable, any fuses and fuse assemblies. All hazardous wiring must be immediately destroyed and replaced in accordance to the above standard.
GETTING STARTED

The Getting started chapter introduces the oscilloscope’s main features, appearance, and set up procedure.

Main Features

<table>
<thead>
<tr>
<th>Model name</th>
<th>Frequency bandwidth</th>
<th>Input channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>5472DC</td>
<td>DC – 70MHz (–3dB)</td>
<td>2</td>
</tr>
<tr>
<td>54102DC</td>
<td>DC – 100MHz (–3dB)</td>
<td>2</td>
</tr>
<tr>
<td>54152DC</td>
<td>DC – 150MHz (–3dB)</td>
<td>2</td>
</tr>
</tbody>
</table>

Performance

- 1 GS/s real-time sampling rate
- 25GS/s equivalent-time sampling rate
- 2M points record length
- Up to 10ns peak detection
- 2mV~10V vertical scale
- 1ns ~ 50s time scale

Features

- 5.7 inch color TFT display
- Saving and recalling setups and waveforms
- 27 automatic measurements
- Multi-language menu (12 languages)
- Math operation: Addition, Subtraction,
multiplication, FFT, FFT RMS

- Data logging
- Go-NoGo testing
- Edge, video, pulse width trigger
- Compact size: (W) 310 x (D) 140 x (H) 142 mm
- Probe factor from 0.1X~2000X voltage/current

Interface

- USB 2.0 full-speed interface for saving and recalling data
- Calibration output
- External trigger input
- USB slave interface for remote control
- PictBridge Printer compatible
Panel Overview

Front Panel

<table>
<thead>
<tr>
<th>LCD display</th>
<th>TFT color, 320 x 234 resolution, wide angle view LCD display.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function keys:</td>
<td>Activates the functions which appear in the left side of the LCD display.</td>
</tr>
<tr>
<td>F1 (top) to F5 (bottom)</td>
<td></td>
</tr>
<tr>
<td>Variable knob</td>
<td>Increases or decreases values and moves to the next or previous parameter.</td>
</tr>
<tr>
<td>Acquire key</td>
<td>Configures the acquisition mode (page 100).</td>
</tr>
<tr>
<td>Display key</td>
<td>Configures the display settings (page 105).</td>
</tr>
<tr>
<td>Cursor key</td>
<td>Runs cursor measurements (page 79).</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
</tr>
</tbody>
</table>

(Continued on next page)
Utility key

Configures the Hardcopy function (page 143), shows the system status (page 135), selects the menu language (page 135), runs the self calibration (page 166), configures the probe compensation signal (page 167), and selects the USB host type (page 132).

Help key

Shows the Help contents on the display (page 61).

Autoset key

Automatically configures the horizontal, vertical, and trigger settings according to the input signal (page 64).

Measure key

Configures and runs automatic measurements (page 72).

Save/Recall key

Saves and recalls images, waveforms, or panel settings (page 137).

Hardcopy key

Stores images, waveforms, or panel settings to USB (page 143), or prints screen images to a PictBridge compatible printer (page 162).

Run/Stop key

Runs or stops triggering (page 66).

Trigger level knob

Sets the trigger level (page 123).

Trigger menu key

Configures the trigger settings (page 123).

Single trigger key

Selects the single triggering mode (page 131).
<table>
<thead>
<tr>
<th>Component</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger force key</td>
<td>Acquires the input signal once regardless of the trigger condition at the time (page 131).</td>
</tr>
<tr>
<td>Horizontal menu key</td>
<td>Configures the horizontal view (page 108).</td>
</tr>
<tr>
<td>Horizontal position knob</td>
<td>Moves the waveform horizontally (page 108).</td>
</tr>
<tr>
<td>TIME/DIV knob</td>
<td>Selects the horizontal scale (page 108).</td>
</tr>
<tr>
<td>Vertical position knob</td>
<td>Moves the waveform vertically (page 117).</td>
</tr>
<tr>
<td>CH1/CH2 key</td>
<td>Configures the vertical scale and coupling mode for each channel (page 117).</td>
</tr>
<tr>
<td>VOLTS/DIV knob</td>
<td>Selects the vertical scale (page 117).</td>
</tr>
<tr>
<td>Input terminal</td>
<td>Accepts input signals: 1MΩ±2% input impedance, BNC terminal.</td>
</tr>
<tr>
<td>Ground terminal</td>
<td>Accepts the DUT ground lead to achieve a common ground.</td>
</tr>
<tr>
<td>MATH key</td>
<td>Performs math operations (page 81).</td>
</tr>
<tr>
<td>USB port</td>
<td>Facilitates transferring waveform data, display images, and panel settings (page 137).</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Probe compensation output</td>
<td>Outputs a 2Vp-p, square signal for compensating the probe (page 167) or demonstration.</td>
</tr>
<tr>
<td>External trigger input</td>
<td>Accepts an external trigger signal (page 123).</td>
</tr>
<tr>
<td>Power switch</td>
<td>Powers the oscilloscope on or off.</td>
</tr>
</tbody>
</table>
Rear Panel

Power cord socket

The fuse socket holds the AC main fuse, T1A/250V. For the fuse replacement procedure, see page 174.

USB slave port

Accepts a type B (slave) male USB connector for remote control of the oscilloscope (page 132) or to print directly to a PictBridge compatible printer.

Calibration output

Outputs the calibration signal used in vertical scale accuracy calibration (page 166).

Security lock slot

Standard laptop security lock slot for ensuring the security of the DSO.
Display

<table>
<thead>
<tr>
<th>Waveforms</th>
<th>Channel 1: Yellow</th>
<th>Channel 2: Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger status</td>
<td>Trig’d</td>
<td>A signal is being triggered</td>
</tr>
<tr>
<td></td>
<td>Trig?</td>
<td>Waiting for a trigger condition</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>Updating the input signal regardless of trigger conditions</td>
</tr>
<tr>
<td></td>
<td>STOP</td>
<td>Triggering is stopped</td>
</tr>
</tbody>
</table>

For trigger setting details, see page 123.

Input signal frequency

Updates the input signal frequency (the trigger source signal) in real-time.

“< 2Hz” Indicates that the signal frequency is less than the lower frequency limit (2Hz) and thus not accurate.

Trigger configuration

Shows the trigger source, type, and slope. In case of the Video trigger, shows the trigger source and polarity.
<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>Shows the channel configurations: coupling mode, vertical scale, and horizontal scale.</td>
</tr>
<tr>
<td>Vertical</td>
<td></td>
</tr>
</tbody>
</table>
Setting up the Oscilloscope

Background

This section describes how to set up the oscilloscope properly including adjusting the handle, connecting a signal, adjusting the scale, and compensating the probe. Before operating the oscilloscope in a new environment, run these steps to make sure the oscilloscope is functionally stable.

Procedure

1. Pull both bases of the handle out slightly.

2. Turn to one of the three preset positions.

3. Connect the power cord.

4. Press the power switch. The display will become active in approximately 10 seconds.

5. Reset the system by recalling the factory settings. Press the Save/Recall key, then Default Setup. For details regarding the factory settings, see page 60.
6. Connect the probe between the Channel1 input terminal and probe compensation signal output (2Vp-p, 1kHz square wave).

7. Set the probe attenuation voltage to x10.

8. Press the Autoset key. A square waveform will appear in the center of the display. For details on Autoset, see page 64.

9. Press the Display key, then Type and select the vector waveform type.

10. Turn the adjustment point on the probe to flatten the square waveform edge.
11. Setting up the oscilloscope is complete. You may continue with the other operations.

Measurement: page 63 Configuration: page 100
Menu Tree and Shortcuts

<table>
<thead>
<tr>
<th>Conventions</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>= Press the functional key for “Normal”</td>
</tr>
<tr>
<td>Average</td>
<td>= Repeatedly press the functional key for “Average”</td>
</tr>
<tr>
<td>Normal ~ Average</td>
<td>= Select a menu from “Normal” to “Average” and press its functionality key</td>
</tr>
<tr>
<td>Normal→VAR</td>
<td>= Press the functionality key for “Normal”, and then use the Variable knob</td>
</tr>
</tbody>
</table>
Select acquisition mode
Normal ~ Peak-Detect
Select average number
Average
Turn Delay on/off
Delay

CH1/CH2 key

Turn channel on/off
CH 1/2
Select coupling mode
Coupling
Invert waveform
Invert
Turn bandwidth limit on/off
BW Limit
Select probe type
Voltage ↔ Current
Select probe attenuation
VAR (0.1x~2000x) (1-2-5 step)
Expand type
Expand
Cursor key 1/2

Turn cursor on/off

Cursor

Move X1 cursor

X1→ VAR

Move X2 cursor

X2→ VAR

Move both X1 and X2 cursor

X1X2→ VAR

Switch to Y cursor

X↔Y

Cursor key 2/2

Turn cursor on/off

Cursor

Move Y1 cursor

Y1→ VAR

Move Y2 cursor

Y2→ VAR

Move both Y1 and Y2 cursor

Y1Y2→ VAR

Switch to X cursor
X ↔ Y
Display key

Select waveform type
Type \leftrightarrow

Waveform accumulate On/Off
Accumulate \leftrightarrow

Refresh accumulation
Refresh

Set display contrast
Contrast \rightarrow VAR \bigcirc

Select display grid

Autoset key

Automatically find the signal and set the scale
Autoset

Change the Type of Autoset mode.
Type \leftrightarrow (available for a few seconds)

Undo Autoset
Undo (available for a few seconds)

Hardcopy key

→ See Utility key (page 54)

Help key

Turn help mode on/off

Horizontal menu key

Switch from Horizontal Menu to Horizontal Position Menu.

Select main (default) display
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select window mode</td>
<td>Window→TIME/DIV</td>
</tr>
<tr>
<td>Zoom in window mode</td>
<td>Window Zoom</td>
</tr>
<tr>
<td>Select window roll mode</td>
<td>Roll</td>
</tr>
<tr>
<td>Select XY mode</td>
<td>XY</td>
</tr>
<tr>
<td>Toggle adjustment mode</td>
<td>H Pos Adj</td>
</tr>
<tr>
<td>Reset horizontal marker</td>
<td>Reset</td>
</tr>
<tr>
<td>Set Horizontal marker/delete horizontal marker.</td>
<td>HOR Set/Clear</td>
</tr>
<tr>
<td>Navigate to previous horizontal marker</td>
<td>Previous</td>
</tr>
<tr>
<td>Navigate to next horizontal marker</td>
<td>Next</td>
</tr>
</tbody>
</table>
Math key 1/2 (+/-/x)

Math on/off

Math

Select math operation type (+/-/x/FFT/FFT rms)

Operation

Set result position

Position→VAR

Math result Volt/Div

Unit/Div→VOLTS/DIV(CH2)
Math key 2/2 (FFT/FFT rms)

Math on/off
Math

Select math operation type (+/-/x/FFT/FFT rms)
Operation

Select FFT source channel
Source

Select FFT window
Window

Select FFT result position
Vertical

Select vertical scale
Vertical

Select vertical units
Vertical

Select Zoom level
Zoom(X)

Select Horizontal position
Zoom(Hz)
Measure key

- **Turn on/off measurement**: Measure
- **Select measurement type**: Voltage/Time/Delay
- **Select measurement item**: VAR or Icon(F3)/ → VAR
- **Go back to previous menu**: Previous Menu

Run/Stop key

- **Freeze/unfreeze waveform or trigger**: Run/Stop
Save/Recall key 1/10

Switch to Save or Recall menu
Recall default setup
Change CSV format

Save/Recall key 2/10

Select other menu
Recall Setup
Select setup source
Source → VAR
Recall setup
Recall
Go to USB file utilities
File Utilities
Save/Recall key 3/10

Recall Waveform

- Select other menu
- Recall Waveform
- Select waveform source
- Source → VAR
- Select waveform destination
- Destination → VAR
- Recall waveform
- Go to USB file utilities
- File Utilities

Save/Recall key 4/10

Recall Image

- Select other menu
- Recall Image
- Turn reference image on/off
- Ref image
- Recall waveform
- Go to USB file utilities
- File Utilities
Save/Recall key 5/10

Display Refs.

- **Display Refs.**
- **Ref. A Off**
- **Ref. B Off**
- **Ref. A On**

Select other menu

Display Refs.

Turn ref. waveform A on/off

Ref. A

Turn ref. waveform B on/off

Ref. B

Save/Recall key 6/10

Save Setup

- **Save Setup**
- **Save Setup**
- **Save Setup**
- **Save Setup**
- **Save Setup**
- **Save Setup**

Select other menu

Save Setup

Select destination

Destination

Save setup

Save

Go to USB file utilities

File Utilities
Save/Recall key 7/10

Select other menu
Save Waveform
Select source
Source → VAR
Select destination
Destination → VAR
Save waveform
Save
Go to USB file utilities
File Utilities

Save Waveform

Save Waveform
Source CH1/2/Math Ref A/B
Destination Memory
Memory Normal USB 1M USB 2M/Refs.
Save (USB only) To File Utilities

Save/Recall key 8/10

Select other menu
Save Image
Turn on/off ink saver
Ink Saver
Save image
Save
Go to USB file utilities
File Utilities

Save Image

Save Image
Ink Saver On/ Off
Destination USB
Save (USB only) To File Utilities
Save/Recall key 9/10

Save All

- Save All
- Ink Saver On/ Off
- Destination USB Normal
 - USB Normal
 - USB 1M/ USB 2M
- Save
- File Utilities
 - (USB only)
 - To File Utilities

Select other menu

Save All

Turn on/off ink saver

Ink Saver

Select destination

Destination ➞ VAR

Save all

Save

Go to USB file utilities

File Utilities

Save/Recall key 10/10

File Utilities

- Select ➞ VAR ➞ Select
- New Folder ➞ Create or rename folder/file
- Rename ➞ New Folder/Rename
- Delete ➞ Delete folder/file
- Previous Menu ➞ Go to previous menu
Previous menu
Trigger key 1/6

Select Trigger type or Trigger Holdoff menu
Type

Trigger key 2/6

Select video trigger type
Type

Select trigger source
Source

Select video standard
Standard

Select video polarity
Polarity

Select video field/line
Line → VAR
Trigger key 3/6

Edge Trigger
- **Type**: Edge
- **Source**: CH1
- **Slope / Coupling**: To Slope/Coupling
- **Mode**: Auto / Normal

Select edge trigger type

Edge

Select trigger source

Source

Go to slope/coupling menu (page 53)

Slope/Coupling

Select trigger mode

Mode

Trigger key 4/6

Pulse Trigger
- **Type**: Pulse
- **Source**: CH1
- **When**: < 20.0 ns
- **Slope / Coupling**: To Slope/Coupling
- **Mode**: Auto / Normal

Select pulse trigger type

Type

Select trigger source

Source

Select pulse trigger condition and pulse width

When → VAR

Go to slope/coupling menu (page 53)

Slope/Coupling

Select trigger mode
Mode
Trigger key 5/6

Select trigger slope type
Slope

Select trigger coupling mode
Coupling

Select frequency rejection
Rejection

Turn noise rejection on/off
Noise Rej

Go back to previous menu
Previous Menu

Trigger key 6/6

Select Holdoff time
VAR

Set to minimum Holdoff time
Set to Minimum

Select Holdoff time
VAR

Set to minimum Holdoff time
Set to Minimum

Set to minimum Holdoff time
Utility key 1/11 (Utility #1)

Go to hardcopy menu

Hardcopy

Go to probe compensation menu

ProbeComp

Select language

Language

Show system information

System Info.

Go to the next Utility menu

More

Utility 2/11 (Utility #2)

Go to the Go-NoGo menu

Go-NoGo

Set the NoGo conditions to inside/inside limits

No Go When

Go to the Data Logging Menu

Data Logging

Go to the next Utility menu

More
Utility key 3/11 (Utility #3)

- **Calibration**
 - Self CAL Menu
 - To Self CAL menu
 - USB Port Auto Detect
 - Auto Detect Computer Printer
 - More
 - To Utility #1 menu
- Enter self calibration
- Self CAL
- Select USB port interface
- USB Port
- Go to the first Utility menu
- More

Utility key 4/11 (Hardcopy - Save All)

- **Hardcopy – Save All**
 - Function Save All
 - Function
 - Ink Saver Off
 - On/ Off
 - Mem Leng USB 1M
 - USB Normal USB 1M/2M
 - CSV Format Fast
 - Fast/ Detail
 - Previous Menu
- Select Hardcopy function
- Function
- Turn on/off Ink saver
- Ink Saver
- Set the memory length
- Mem Leng
- Change CSV format
- CSV Format
- Go to previous menu
- Previous Menu
Utility key 5/11 (Hardcopy -Printer)

<table>
<thead>
<tr>
<th>Hardcopy – Printer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Printer</td>
<td></td>
</tr>
<tr>
<td>Ink Saver Off</td>
<td>On/ Off</td>
</tr>
<tr>
<td>Page Size Default</td>
<td>Default/ 4X6/ A4</td>
</tr>
<tr>
<td>Previous Menu</td>
<td></td>
</tr>
</tbody>
</table>

- Select Hardcopy function
- Function
- Turn on/off Ink saver
- Ink Saver
- Set default page size
- Page Size
- Go to previous menu
- Previous Menu

Utility key 6/11 (Hardcopy -Save Image)

<table>
<thead>
<tr>
<th>Hardcopy – Save Image</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Save Image</td>
<td></td>
</tr>
<tr>
<td>Ink Saver Off</td>
<td>On/ Off</td>
</tr>
<tr>
<td>Previous Menu</td>
<td></td>
</tr>
</tbody>
</table>

- Select Hardcopy function
- Function
- Turn on/off Inksaver
- Ink Saver
- Go to previous menu
- Previous Menu
Utility key 7/11 (Probe compensation)

Probe compensation

- Wave Type
 - Select probe compensation signal
 - Wave Type ➔
- Frequency
 - Set frequency for square wave
 - Frequency ➔ VAR ➔
- Duty Cycle
 - Set duty cycle for square wave
 - Duty Cycle ➔ VAR ➔
- Default
 - Go to previous menu
 - Previous Menu

Utility key 8/11 (Go-NoGo)

Edit

- Template
 - Switch between templates
 - Template ➔
- Source
 - Select the template source
 - Source ➔
- Tolerance
 - Set the tolerance (% or Divisions)
 - Tolerance ➔ VAR ➔
- Max/Min/Auto
- Ref A/ Ref B, W01~W15
- 0.4%~40%
- 0.4DIV~40DIV
- Save & Create
 - Save the template
 - Save & Create
- To previous menu
 - Go back to previous menu
 - Previous Menu
Utility key 9/11 (Data Logging 1/2)

<table>
<thead>
<tr>
<th>Data logging</th>
<th>Turn Data Logging On/Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Data logging</td>
</tr>
<tr>
<td>CH1/CH2</td>
<td>Set the logging source</td>
</tr>
<tr>
<td>Setup</td>
<td>Go to the Data Logging Edit menu</td>
</tr>
<tr>
<td>File Utilities</td>
<td>(USB only) Go to File Utilities</td>
</tr>
<tr>
<td>Previous Menu</td>
<td>Go to previous menu</td>
</tr>
</tbody>
</table>

Utility key 10/11 (Data Logging 2/2)

<table>
<thead>
<tr>
<th>Edit</th>
<th>Save the logs as waveform data or as image files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save Waveform</td>
<td>Waveform/Image</td>
</tr>
<tr>
<td>Interval 2 secs</td>
<td>2 secs~30 mins</td>
</tr>
<tr>
<td>Duration 5 mins</td>
<td>5 mins~100 hrs</td>
</tr>
<tr>
<td>Previous Menu</td>
<td>Go back to previous menu</td>
</tr>
</tbody>
</table>

Save
Set the logging interval
Interval → VAR
Set the duration of the record log
Duration → VAR
Go back to previous menu
Previous Menu
Utility key 11/11 (Self CAL Menu)

<table>
<thead>
<tr>
<th>Self Cal.</th>
<th>Start Vertical Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Vertical</td>
</tr>
</tbody>
</table>
Default Settings

Here are the factory installed panel settings which appear when pressing the Save/Recall key → Default Setup.

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>Mode: Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Scale: 2V/Div</td>
</tr>
<tr>
<td></td>
<td>Coupling: DC</td>
</tr>
<tr>
<td></td>
<td>BW limit: Off</td>
</tr>
<tr>
<td>Cursor</td>
<td>Source: CH1</td>
</tr>
<tr>
<td>Display</td>
<td>Type: Vectors</td>
</tr>
<tr>
<td></td>
<td>Grid: Full</td>
</tr>
<tr>
<td>Horizontal</td>
<td>Scale: 2.5us/Div</td>
</tr>
<tr>
<td></td>
<td>H Pos Adj: Fine</td>
</tr>
<tr>
<td>Math</td>
<td>Type: + (Add)</td>
</tr>
<tr>
<td></td>
<td>Unit/Div: 2V</td>
</tr>
<tr>
<td>Measure</td>
<td>Item: Vpp, Vavg, Frequency, Duty Cycle, Rise Time</td>
</tr>
<tr>
<td>Trigger</td>
<td>Type: Edge</td>
</tr>
<tr>
<td></td>
<td>Mode: Auto</td>
</tr>
<tr>
<td></td>
<td>Coupling: DC</td>
</tr>
<tr>
<td></td>
<td>Noise Rejection: Off</td>
</tr>
</tbody>
</table>
Utility | Hardcopy: SaveImage, InkSaver On | ProbeComp: Square wave, 1k, 50% duty cycle
Go-NoGo | Go-NoGo: Off | Source: CH1
 | When: | Violating: Stop

(Continued)

Data Logging | Data logging: Off | Source: CH1
 | Setup: Waveform | Interval: 2 secs
 | Duration: 5 mins |

Built-in Help

The Help key shows the contents of the built-in help support. When you press a function key, its descriptions appear in the display.

Applicable keys

<table>
<thead>
<tr>
<th>Acquire</th>
<th>Display</th>
<th>Utility</th>
<th>Help</th>
<th>Autoset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursor</td>
<td>Measure</td>
<td>Save/Recall</td>
<td>Hardcopy</td>
<td>Run/Stop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Vertical)</th>
<th>(Horizontal)</th>
<th>(Trigger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1</td>
<td>MATH</td>
<td>CH 2</td>
</tr>
<tr>
<td>MENU</td>
<td>MENU</td>
<td>SINGLE</td>
</tr>
<tr>
<td>FORCE</td>
<td></td>
<td>FORCE</td>
</tr>
</tbody>
</table>

Procedure

1. Press the Help key. The display changes to the Help mode.
2. Press a functional key to access its help contents. (example: Acquire key)

3. Use the Variable knob to scroll the Help contents up and down.

4. Press the Help key again to exit the Help mode.
MEASUREMENT

The Measurement chapter describes how to properly observe a signal using the oscilloscope’s basic functions, and how to observe a signal in a detailed manner using some of the advanced functions such as:

- Automatic measurements, cursor measurements, and math operations.

Basic Measurements

This section describes the basic operations required in capturing and viewing an input signal. For more detailed operations, see the following chapters.

- Measurements → from page 63
- Configuration → from page 100

Activating a channel

Activating a channel

To activate an input channel, press the Channel key, CH1 or CH2. The channel indicator appears at the left side of the display and the channel icon changes accordingly.

(Continued on next page)
De-activating a channel

To de-activate the channel, press the Channel key twice (once if the channel menu is already selected).

Using Autoset

The Autoset function automatically configures the panel settings to the best viewing conditions, in the following way:

- Selecting the horizontal scale
- Positioning the waveform horizontally
- Selecting the vertical scale
- Positioning the waveform vertically
- Selecting the trigger source channel
- Activating the channels

Autoset can be configured into two types of modes, AC Priority Mode or Fit Screen Mode.

AC Priority mode will scale the waveform to the screen removing any DC component.

Fit Screen Mode will fit the waveform to the best scale, including any DC components (offset).
Procedure

1. Connect the input signal to the oscilloscope and press the Autoset key.

2. The waveform(s) appears in the center of the display.

- **Undoing the Autoset**

 To undo the Autoset, press *Undo* (available for a few seconds).

- **Adjusting the trigger level**

 If the waveform is still unstable, try adjusting the trigger level up or down by using the Trigger Level knob.

- **Change Modes**

 To change the type of mode, press *Type* (available for a few seconds). The Type icon will change to next type.

 Type

 Fit Screen, AC Priority

 The next time the Autoset key is pressed, the new mode will be activated.
Limitation

Auto set does not work in the following situation.

- Input signal frequency less than 2Hz
- Input signal amplitude less than 30mV

Running and stopping the trigger

Background

In the trigger Run mode, the oscilloscope constantly searches for a trigger condition and updates the signal onto the display when the condition is met.

In the trigger Stop mode, the oscilloscope stops triggering and thus the last acquired waveforms stay in the display. The trigger icon at the top of the display changes into Stop mode.

Pressing the Trigger Run/Stop key switches between the Run and Stop mode.
Waveform operation

Waveforms can be moved or scaled in both the Run and Stop mode. For details, see page 108 (Horizontal position/scale) and page 117 (Vertical position/scale).

Changing the horizontal position and scale

For more detailed configurations, see page 108.

Setting the horizontal position

The horizontal position knob moves the waveform left or right.

The position indicator moves along with the waveform and the distance from the center point is displayed as the offset in the upper side of the display.
Selecting the horizontal scale

To select the timebase (scale), turn the TIME/DIV knob; left (slow) or right (fast).

Range \(1\text{ns/Div} \sim 10\text{s/Div}, 1-2.5-5 \) increment

![Horizontal scale: 50us/div](image1)

![Horizontal scale: 250us/div](image2)

Changing the vertical position and scale

For more detailed configuration, see page 117.

Set vertical position

To move the waveform up or down, turn the vertical position knob for each channel.

As the waveform moves, the vertical position of the cursor appears at the bottom left corner of the display.

Run/Stop mode

The waveform can be moved vertically in both Run and Stop mode.

Select vertical scale

To change the vertical scale, turn the VOLTS/DIV knob; left (down) or right (up).

Range \(2\text{mV/Div} \sim 10\text{V/Div}, 1-2-5 \) increments
The vertical scale indicator for each channel on the bottom left of the display changes accordingly.
Using the probe compensation signal

Background

This section introduces how to use the probe compensation signal for general usage, in case the DUT signal is not available or to get a second signal for comparison. For probe compensation details, see page 167.

¡

Note: The frequency accuracy and duty factor are not guaranteed. Therefore the signal should not be used for reference purposes.

Waveform type

- Square waveform used for probe compensation. 1k ~ 100kHz, 5% ~ 95%.
- Demonstration signal for showing the effects of peak detection. See page 100 for peak detection mode details.

View the probe compensation waveform

1. Connect the probe between the compensation signal output and Channel input.

2. Press the Utility key.
3. Press \textit{ProbeComp}.

4. Press \textit{Wave type} repeatedly to select the wave type.

5. (For \textit{ only}) To change the frequency, press \textit{Frequency} and use the Variable knob.

\begin{itemize}
 \item Range \(1\text{kHz} \sim 100\text{kHz} \)
\end{itemize}

6. (For \textit{ only}) To change the duty cycle, press \textit{Duty Cycle} and use the Variable knob.

\begin{itemize}
 \item Range \(5\% \sim 95\% \)
\end{itemize}

For probe compensation details, see page 167.
Automatic Measurements

The automatic measurement function measures input signal attributes and updates them in the display. Up to 5 automatic measurement items can be updated at any one time on the side menus. All automatic measurement types can be displayed on screen if necessary.

Measurement items

<table>
<thead>
<tr>
<th>Overview</th>
<th>Voltage type</th>
<th>Time type</th>
<th>Delay type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vpp</td>
<td>Frequency</td>
<td>FRR</td>
</tr>
<tr>
<td></td>
<td>Vpp</td>
<td>Period</td>
<td>FRF</td>
</tr>
<tr>
<td></td>
<td>Vpp</td>
<td>RiseTime</td>
<td>FFR</td>
</tr>
<tr>
<td></td>
<td>Vpp</td>
<td>FallTime</td>
<td>FFF</td>
</tr>
<tr>
<td></td>
<td>Vpp</td>
<td>+Width</td>
<td>LRR</td>
</tr>
<tr>
<td></td>
<td>Vpp</td>
<td>-Width</td>
<td>LRF</td>
</tr>
<tr>
<td></td>
<td>Vpp</td>
<td>Dutycycle</td>
<td>LFR</td>
</tr>
<tr>
<td></td>
<td>Vpp</td>
<td>Difference between positive and negative peak voltage (=Vmax - Vmin)</td>
<td>LFF</td>
</tr>
<tr>
<td></td>
<td>Vmax</td>
<td>Positive peak voltage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vmin</td>
<td>Negative peak voltage.</td>
<td></td>
</tr>
</tbody>
</table>

Voltage measurement items

- **Vpp**: Difference between positive and negative peak voltage (=Vmax - Vmin)
- **Vmax**: Positive peak voltage.
- **Vmin**: Negative peak voltage.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vamp</td>
<td>Difference between global high and global low voltage (=Vhi – Vlo)</td>
</tr>
<tr>
<td>Vhi</td>
<td>Global high voltage.</td>
</tr>
<tr>
<td>Vlo</td>
<td>Global low voltage.</td>
</tr>
<tr>
<td>Vavg</td>
<td>Averaged voltage of the first cycle.</td>
</tr>
<tr>
<td>Vrms</td>
<td>RMS (root mean square) voltage.</td>
</tr>
<tr>
<td>ROVShoot</td>
<td>Rise overshoot voltage.</td>
</tr>
<tr>
<td>FOVShoot</td>
<td>Fall overshoot voltage.</td>
</tr>
<tr>
<td>RPRESShoot</td>
<td>Rise preshoot voltage.</td>
</tr>
<tr>
<td>FPRESShoot</td>
<td>Fall preshoot voltage.</td>
</tr>
<tr>
<td>Freq</td>
<td>Frequency of the waveform.</td>
</tr>
<tr>
<td>Period</td>
<td>Waveform cycle time (=1/Freq).</td>
</tr>
<tr>
<td>Risetime</td>
<td>Rising time of the pulse (~90%).</td>
</tr>
<tr>
<td>Falltime</td>
<td>Falling time of the pulse (~10%).</td>
</tr>
<tr>
<td>+Width</td>
<td>Positive pulse width.</td>
</tr>
<tr>
<td>−Width</td>
<td>Negative pulse width.</td>
</tr>
</tbody>
</table>
Duty Cycle

Ratio of signal pulse compared with whole cycle
=100x (Pulse Width/Cycle)

Delay measurement items

FRR
Time between:
Source 1 first rising edge and
Source 2 first rising edge

FRF
Time between:
Source 1 first rising edge and
Source 2 first falling edge

FFR
Time between:
Source 1 first falling edge and
Source 2 first rising edge

FFF
Time between:
Source 1 first falling edge and
Source 2 first falling edge

LRR
Time between:
Source 1 first rising edge and
Source 2 last rising edge

LRF
Time between:
Source 1 first rising edge and
Source 2 last falling edge

LFR
Time between:
Source 1 first falling edge and
Source 2 last rising edge

LFF
Time between:
Source 1 first falling edge and
Source 2 last falling edge

Automatic measurement gating
Background

Automatic measurements can be restricted to a specific area (gating). When cursors are turned on, the area between the cursors is used for automatic measurements. When cursors are turned off, measurements are derived from all the points that are displayed on screen.

Turn gating on

1. Turn on cursors to enable gated automatic measurements.

2. Press the Measure key.

3. The measurement results appear on the menu bar, constantly updated. All measurements are derived from the cursor positions. See **Automatically measuring the input signals** for more details (page 76).

Turn gating off

4. Turn off cursors to turn off gated automatic measurements.
Automatically measuring the input signals

Viewing the measurement result

1. Press the Measure key.

2. The measurement results appear on the menu bar, constantly updated. 5 measurement slots (F1 to F5) can be customized.

Editing a measurement item

3. Press the corresponding menu key (F1~F5) to select the measurement slot to be edited.

4. The editing menu appears
5. Use the Variable knob to select a different measurement item.

6. Press Source 1 repeatedly to change Source1 from CH1 to CH2 or MATH.

Range: CH1, 2, Math

7. Press Source 2 repeatedly to change the channel for Source2.

Range: CH1, 2, Math

8. Press F3 to view all measurement items.

9. All the measurements appear in the center of the screen.

10. Press F3 again to return.
Note: All the editing operations can still be performed when viewing all the measurement items.

11. Press *Previous Menu* to confirm the item selection and to go back to the measurement results view.
Cursor Measurements

Cursor lines, horizontal or vertical, show the precise position of the input waveforms or the math operation results. The horizontal cursors can track time, voltage/current* and frequency, whilst the vertical cursors can track voltage/current*. All measurements are updated in real-time. *probe type dependant (page 121).

Using the horizontal cursors

Procedure

1. Press the Cursor key. The cursors appear in the display.

2. Press $X \leftrightarrow Y$ to select the horizontal (X1&X2) cursor.

3. Press Source repeatedly to select the source channel.

 Range CH1, 2, MATH

4. The cursor measurement results will appear in the menu, F2 to F4.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Time position of the left cursor. (relative to zero)</td>
</tr>
<tr>
<td>X2</td>
<td>Time position of the right cursor. (relative to zero)</td>
</tr>
<tr>
<td>X1X2</td>
<td>The difference between the X1 and X2.</td>
</tr>
<tr>
<td>Δ: us</td>
<td>The time difference between X1 and X2.</td>
</tr>
</tbody>
</table>
f: Hz The time difference converted to frequency.

V/A The voltage/current difference from X1 and X2.

M1: dB Position of the left cursor in dB.

M2: dB Position of the right cursor in dB.

Δ: dB The dB difference between M1 and M2.

Div: The frequency per division.

<table>
<thead>
<tr>
<th>Moving the horizontal cursors</th>
<th>To move the left cursor, press X1 and then use the Variable knob.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X1</td>
</tr>
<tr>
<td></td>
<td>-5.000uS</td>
</tr>
<tr>
<td></td>
<td>0.000uV</td>
</tr>
<tr>
<td></td>
<td>X2</td>
</tr>
<tr>
<td></td>
<td>5.000uS</td>
</tr>
<tr>
<td></td>
<td>0.000uV</td>
</tr>
<tr>
<td></td>
<td>X1X2</td>
</tr>
<tr>
<td></td>
<td>Δ: 10.00uS</td>
</tr>
<tr>
<td></td>
<td>f: 100.0kHz</td>
</tr>
<tr>
<td></td>
<td>0.000uV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remove cursors</th>
<th>Press Cursor to remove the onscreen cursors.</th>
</tr>
</thead>
</table>

Using the vertical cursors

<table>
<thead>
<tr>
<th>Procedure</th>
<th>1. Press the Cursor key.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cursor</td>
</tr>
<tr>
<td></td>
<td>X↔Y</td>
</tr>
<tr>
<td></td>
<td>2. Press X↔Y to select the vertical (Y1&Y2) cursor.</td>
</tr>
<tr>
<td></td>
<td>X↔Y</td>
</tr>
</tbody>
</table>

Press Cursor to remove the onscreen cursors.
3. Press Source repeatedly to select the source channel.

Source CH1

Range CH1, 2, MATH

4. The cursor measurement results will appear in the menu.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>Voltage level of the upper cursor</td>
</tr>
<tr>
<td>Y2</td>
<td>Voltage level of the lower cursor</td>
</tr>
<tr>
<td>Y1Y2</td>
<td>The difference between the upper and lower cursor</td>
</tr>
<tr>
<td>V/A</td>
<td>The voltage/current difference (Y1-Y2).</td>
</tr>
</tbody>
</table>

Moving the vertical cursors

To move the upper cursor, press Y1 and then use the Variable knob.

Y1 123.4mV

To move the lower cursor, press Y2 and then use the Variable knob.

Y2 12.9mV

To move both cursors at once, press Y1Y2 and then use the Variable knob.

Y1Y2 10.5mV

Remove cursors

Press Cursor to remove the onscreen cursors.

Math Operations

The Math operations can add, subtract, multiply or perform FFT/FFT RMS on the input waveforms. The resulted waveform can be measured using the cursors, and saved or recalled just like normal input signals.
Overview

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition (+)</td>
<td>Adds the amplitude of CH1 & CH2 signals.</td>
</tr>
<tr>
<td>Subtraction (–)</td>
<td>Extracts the amplitude difference between CH1 & CH2.</td>
</tr>
<tr>
<td>Multiplication (×)</td>
<td>Multiplies CH1 and CH2.</td>
</tr>
<tr>
<td>FFT</td>
<td>Performs a FFT calculation on a signal. Four types of FFT windows are available: Hanning, Flattop, Rectangular, and Blackman.</td>
</tr>
<tr>
<td>FFT RMS</td>
<td>Performs a FFT RMS calculation on a signal. RMS is similar to FFT, however the amplitude is calculated as RMS and not dB. Four types of FFT windows are available: Hanning, Flattop, Rectangular, and Blackman.</td>
</tr>
</tbody>
</table>

Hanning FFT window
- **Frequency resolution**: Good
- **Amplitude resolution**: Not good
- **Suitable for....**: Frequency measurement on periodic waveforms

Flattop FFT window
- **Frequency resolution**: Not good
- **Amplitude resolution**: Good
- **Suitable for....**: Amplitude measurement on periodic waveforms
<table>
<thead>
<tr>
<th>Window Type</th>
<th>Frequency Resolution</th>
<th>Amplitude Resolution</th>
<th>Suitable for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular FFT</td>
<td>Very good</td>
<td>Bad</td>
<td>Single-shot phenomenon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(this mode is the same as having no window at all)</td>
</tr>
<tr>
<td>Blackman FFT</td>
<td>Bad</td>
<td>Very good</td>
<td>Amplitude measurement on periodic waveforms</td>
</tr>
</tbody>
</table>

Adding, subtracting or multiplying signals

Procedure

1. Activate both CH1 and CH2.

2. Press the Math key.

3. Press *Operation* repeatedly to select addition (+), subtraction (−) or multiplication (×).

4. The math measurement result appears in the display.
5. To move the math result vertically, use the Variable knob. The position will be displayed in Position.

6. To clear the math result from the display, press the Math key again.

Using the FFT function

Procedure

1. Press the Math key.

2. Press Operation repeatedly to select FFT or FFT RMS.

3. Press Source repeatedly to select the source channel.

4. Press Window repeatedly to select the FFT window type.

5. The FFT result appears. The horizontal scale changes from time to frequency, and the vertical scale from voltage to dB or RMS.
6. To move the FFT waveform vertically, press *Vertical* repeatedly until Div is selected. Use the Variable knob to change the vertical scale.

 Range ~12.00 Div ~ +12.00 Div

7. To select the vertical scale of an FFT waveform, press *Vertical* repeatedly until dB is selected. Use the Variable knob to change the vertical scale.

 Range 1, 2, 5, 10, 20 dB/Div

8. To select the vertical scale of an FFT rms waveform, use the VOLTS/DIV knob to change the vertical scale. The scale will be shown in the *Vertical* soft-key.

 Range Volts/Div

9. To zoom in on the FFT/FFT rms waveform, press *Zoom* repeatedly until X is selected. Use the Variable knob to change the Zoom level.

 Range 1/2/5/10/20X
10. To move the FFT/FFT rms waveform horizontally, press Zoom repeatedly until Hz is selected. Use the Variable knob to change the horizontal position.

Range 0~50.000MHz

11. To clear the FFT result from the display, press the Math key again.

Go No-Go Testing

Overview

Background

Go-NoGo testing checks if a waveform conforms to a user-specified maximum and minimum boundary (template). The testing can be set to stop or continue each time the template has or has not been violated by the input waveform.

<table>
<thead>
<tr>
<th>Settings</th>
<th>Item</th>
<th>Default</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoGo criteria: When inside or outside the boundary</td>
<td>Inside</td>
<td>Page 88</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Channel 1</td>
<td>Page 88</td>
<td></td>
</tr>
<tr>
<td>Test continue or stop when NoGo occurs</td>
<td>Stop</td>
<td>Page 90</td>
<td></td>
</tr>
<tr>
<td>Boundary (template) – selects the minimum and maximum boundaries (template) from a single waveform</td>
<td>Auto (0.4%)</td>
<td>Page 90</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Run Tests</td>
<td></td>
<td>Page 95</td>
<td></td>
</tr>
</tbody>
</table>
Edit: NoGo When

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press No Go When repeatedly to select the NoGo conditions.

 NoGo when the waveform is inside the boundary (template)
 NoGo when the waveform is outside of the boundary (template)

Edit: Source

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press the Go-NoGo Menu key.
4. Press *Source* repeatedly to select the source channel (CH1 or CH2).
Edit: NoGo Violation Conditions

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press the Go-NoGo Menu key.

4. Press Violating repeatedly to select the NoGo conditions.

 Stop Stops the test when the NoGo conditions have been met.

 Continue The tests continue even when the NoGo conditions have been met.

Edit: Template (boundary)

Background The NoGo template sets the upper and lower amplitude boundary. Two methods are available: Min/Max and Auto.

 Min/Max Selects the upper boundary (Max) and lower boundary (Min) as separate waveforms, from the internal memory. The upper boundary is saved to Ref A, the lower boundary is saved to Ref. B.
Advantage: The template shape and distance (allowance) between the source signal are fully customizable.

Disadvantage: The waveforms (templates) have to be stored internally prior to this selection.

Auto

Creates the upper and lower boundary (template) from the source signal, not from an internally stored waveform.

Advantage: No need to store the waveforms prior to this selection.

Disadvantage: The template shape is proportional to the source signal. The distance (allowance) between the source signal and the upper and lower template is the same.

Max/Mix

1. The template is based on the source signal. Ensure the source signal appears on the display.

2. Press the Utility key.

3. Press the More key.

4. Press the Go-NoGo Menu key.

5. Press the Template Edit key.
6. Press Template repeatedly to select the upper (Max) or lower (Min) boundaries.

7. Press Source and use the Variable knob to select the waveform template.

8. Press Position and use the Variable knob to set the waveform amplitude.

9. Repeat steps 5-7 for the other template setting (Max or Min).

10. When both Max and Min templates have been configured, press Save & Create to save the templates.
Auto

1. The template is based on the source signal. Ensure the source signal appears on the display.

2. Press the Utility key.

3. Press the More key.

4. Press the Go-NoGo Menu key.

5. Press the Template Edit key.

6. Press Template repeatedly to select the Auto template.
7. Press Source and use the Variable knob to select the template source.

8. Press Tolerance repeatedly to choose the tolerance units, % or Div. Use the Variable knob to set the tolerance. The tolerance is for both the horizontal and vertical axis.

- %: 0.4% ~ 40.0%
- Div: 0.04 Div ~ 4.0 Div

9. When the Auto template has been configured, press Save & Create to save the template.

![Diagram showing Auto template, Tolerance, and Source waveform with control knobs and settings]
Run Go-NoGo Tests

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press the Go-NoGo Menu key.

Ensure the source signal and boundary templates appear on the screen.

4. Press Go-NoGo. The test starts and stops according to the conditions set on page 88, 90. To stop the test that has already started, press Go-NoGo again.

5. The test results appear in the Ratio soft-key. The numerator denotes the total number of failed tests. The denominator denotes the total number of tests.

 Numerator: Number of “failed” tests.

 Denominator: Total number of tests.
Data Logging

Overview

Background

The Data logging function allows you to log data or a screen image over timed intervals for up to 100 hours to a USB flash drive.

The data or images are stored to a USB flash drive in a directory named LogXXXX. LogXXXX is incremented each time the data logging function is used.

The files saved in the LogXXXX directory are named DSXXXX.CSV, or DSXXXX.BMP for data or image files, respectively. At each timed interval data or an image file is saved and the file number incremented. For example, DS0000 is the first logged data, DS0001 is the second and so on.
Edit: Source

Procedure

1. Press the Utility key.

Utility

2. Press the More key.

More

3. Press the Data logging Menu key.

Data logging Menu

4. Press Source repeatedly to select the source channel (CH1 or CH2).

Source CH1

Edit: Setup Parameters

Background

The logging function must set the type of data that will be logged (waveform/image), the capture interval time and the duration of the data logging.

Procedure

1. Press the Utility key.

Utility

2. Press the More key.

More

3. Press the Data logging Menu key.

Data logging Menu
4. Press the *Setup* key.

5. Press *Save* repeatedly to log data or screen images.

6. Press *Interval* and use the Variable knob to select the interval time.

 - Interval time
 - 2 secs~ 2min (duration = 5 min)
 - 2 secs~ 5 min (duration 5~ 30 min)
 - 2 secs~ 30 min (duration 30+ min)

7. Press *Duration* and use the Variable knob to set the duration time.

 - Duration
 - 5 mins ~ 100 hours

8. Press Previous menu to return to the Data logging menu. Data logging is now ready to begin.
Run Data logging

Background

Ensure the data source (page 97) and data logging setup has been set (page 97).

Procedure

1. Insert a USB flash drive into the USB front panel port.

2. Press the Utility key.

3. Press the More key.

4. Press the Data logging Menu key.

5. Press Data logging to turn data logging On. Data/image files start logging to the USB flash drive automatically. To stop the Data logging, press the Data logging key again.
CONFIGURATION

The Configuration chapter describes how to configure panel settings to make measurements and observations suited to the application needs.

Acquisition

The acquisition process samples the analog input signals and converts them into digital format for internal processing. You may select the normal, average, or peak detect acquisition mode.

Selecting the acquisition mode

Procedure

1. Press the Acquire key.

2. Select the acquisition mode between Normal, Average and Peak Detect.

<table>
<thead>
<tr>
<th>Range</th>
<th>Normal</th>
<th>All of the acquired data is used to draw the waveform.</th>
<th>Normal</th>
<th>Average</th>
<th>Peak Detect</th>
</tr>
</thead>
</table>

Acquire

Press the Acquire key.

Select the acquisition mode between Normal, Average and Peak Detect.
Average

Multiple data is averaged to form a waveform. This mode is useful for drawing a noise-free waveform. To select the number, press *Average* repeatedly.

Average number: 2, 4, 8, 16, 32, 64, 128, 256

Peak detect

To activate the Peak detect mode, press *Peak-Detect*. Only the minimum and maximum value pairs for each acquisition interval (bucket) are used. This mode is useful for catching abnormal glitches in a signal.

Peak detect effect using the probe comp. waveform

1. One of the probe compensation waveforms can demonstrate the peak detection mode. Connect the probe to the probe compensation output.

2. Press the Utility key.

3. Press *ProbeComp*.

4. Press *Wave Type* and select the waveform.

5. Press the Autoset key. The oscilloscope positions the waveform in the center of the display.

6. Press the Acquire key.

8. Press Peak-Detect and see that a spike noise is captured.

Example

The peak detect mode reveals the occasional glitch.

Selecting Delay mode

Background

When delay time is ON, the displayed output is delayed for a defined amount of time from the trigger point. Using the delay function is useful for observing an area of the waveform that occurs some time after the trigger point.

Delay On

With Delay On the expansion point and trigger point become separated by the amount of delay time. As the delay time is increased the trigger point moves left from the expansion point. When the horizontal scale is adjusted, the waveform expands from the expansion point, not the trigger point.
Delay Off

With Delay Off the expansion point and trigger point are always in the same position. Thus when the horizontal scale is adjusted, the waveform expands from the trigger point.

Procedure

1. Press the Acquire key.

2. Press Delay On/Off to toggle Delay On/Off.

3. Use the Horizontal Position knob to increase or decrease the delay time when Delay is set to On.

4. Adjust the horizontal scale to zoom into the waveform.
Real time vs Equivalent time sampling mode

<table>
<thead>
<tr>
<th>Background</th>
<th>The oscilloscope automatically switches between two sampling modes, Real-time and Equivalent-time, according to the number of active channels and sampling rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time sampling</td>
<td>Once sampled data is used to reconstruct a single waveform. Short-time events might get lost if the sampling rate gets too high. This mode is used when the sampling rate is relatively low (1GSa/s or lower).</td>
</tr>
<tr>
<td>Equivalent-time sampling</td>
<td>Multiple numbers of sampled data are accumulated to reconstruct a single waveform. ETS restores more waveform detail but takes longer to update the waveform. This mode is used when the sampling rate becomes higher than 1GSa/s. The maximum equivalent-time sampling rate is 25GSa/s.</td>
</tr>
</tbody>
</table>
Display

The Display section describes how to configure the display settings: drawing type, waveform accumulation, contrast adjustment, and grid settings.

Selecting vector or dot drawing

<table>
<thead>
<tr>
<th>Procedure</th>
<th>1. Press the Display key.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Press Type repeatedly to select the waveform drawing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types</th>
<th>Dots</th>
<th>Only the sampled dots are displayed.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vectors</td>
<td>The sampled dots are connected by lines.</td>
</tr>
</tbody>
</table>

Accumulating the waveform

<table>
<thead>
<tr>
<th>Background</th>
<th>Accumulation preserves the old waveform drawings and overwrites new waveforms on top of it. It is useful for observing waveform variation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td>1. Press the Display key.</td>
</tr>
<tr>
<td></td>
<td>2. Press Accumulate to turn on the waveform accumulation.</td>
</tr>
</tbody>
</table>
3. To clear the accumulation and start it over (refresh), press Refresh.

Example

<table>
<thead>
<tr>
<th>Accumulation off</th>
<th>Accumulation on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusting the display contrast

Procedure

1. Press the Display key.

2. Press Contrast.

3. Turn the Variable knob left to lower the contrast (dark display) or right to raise the contrast (bright display).

Selecting the display grid

Procedure

1. Press the Display key.
2. Press the grid icon repeatedly to select the grid.

Parameters

- Shows the full grid.
- Shows the outer frame and X/Y axis.
- Shows only the outer frame.
Horizontal View

The Horizontal view section describes how to configure the horizontal scale, position, waveform update mode, window zoom, and X-Y mode.

Moving the waveform position horizontally

Procedure

The horizontal position knob moves the waveform left or right. The position indicator at the top of the display shows the center and current position.

Center position

Moving right

Selecting the horizontal scale

Select horizontal scale

To select the timebase (scale), turn the TIME/DIV knob; left (slow) or right (fast).

Range

1ns/Div ~ 50s/Div, 1-2.5-5-10

increment

The timebase indicator at the bottom of the display updates the current horizontal scale.
Selecting the waveform update mode

Background
The display update mode is switched automatically or manually according to the horizontal scale.

Main mode
Updates the whole displayed waveform at once. The main mode is automatically selected when the horizontal scale (timebase) is fast.

- Horizontal scale \(\leq 100\text{ms/div} \)
- Trigger All modes available

Roll mode
Updates and moves the waveform gradually from the right side of the display to the left. The Roll mode is automatically selected when the horizontal scale (timebase) is 50ms or slower.

When in the Roll mode, an indicator appears at the bottom of the display. When in roll mode the record length is 2M (1 channel) or 1M (2 channel).

- **Main mode**
 - Timebase \(\geq 50\text{ms/div} \) (\(\leq 1.25\text{MS/s} \))
 - Trigger Auto mode only

Selecting the Roll mode manually
1. Press the Horizontal menu key.

![Menu Icon]
2. Press Roll. The horizontal scale automatically becomes 50ms/div and the waveform starts scrolling from the right side of the display. (If the oscilloscope is already in the Roll mode, there will be no change).
Zooming the waveform horizontally

Procedure/range

1. Press the Horizontal Menu key.

2. Press Window.

3. Use the horizontal position knob to move the zoom range sideways, and TIME/DIV knob to change the zoom range width.

 The width of the bar in the middle of the display is the actual zoomed area.

 Zoom range 1ns ~ 25s

4. Press Window Zoom. The specified range gets zoomed.
Example

Setting the zoom width

Zooming in

Zoom width
Viewing waveforms in the X-Y mode

Background

The X-Y mode compares the voltage of Channel 1 and Channel 2 waveforms in a single display. This mode is useful for observing the phase relationship between the two waveforms.

Procedure

1. Connect the signals to Channel 1 (X-axis) and Channel 2 (Y-axis).

2. Make sure both Channel 1 and 2 are activated.

3. Press the Horizontal key.

4. Press XY. The display shows two waveforms in X-Y format; Channel 1 as X-axis, Channel 2 as Y-axis.

Adjusting the X-Y mode waveform

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal position</td>
<td>CH1 Position knob</td>
</tr>
<tr>
<td>Horizontal scale</td>
<td>CH1 Volts/Div knob</td>
</tr>
<tr>
<td>Vertical position</td>
<td>CH2 Position knob</td>
</tr>
<tr>
<td>Vertical scale</td>
<td>CH2 Volts/Div knob</td>
</tr>
</tbody>
</table>
Example

Main mode

XY mode

XY mode
Horizontal Adjustment Menu

Background

The horizontal adjustment menu allows markers to be set at different times relative to the Horizontal position marker at 0 seconds. Each marker is linked to the mark directly before and after (in time). There can be up to 30 markers linked together.

1. Press the Horizontal menu key twice to enter the horizontal adjustment menu.

2. Press `H Pos Adj` to toggle between coarse and fine adjustments.

3. Adjust the horizontal position with the horizontal position knob.

Set marker

4. Press `Set/Clear` to create a marker at the current horizontal position.

Delete marker

5. If there is already a marker at the current horizontal position press `Set/Clear` to delete the current marker.

Reset horizontal position

6. Press Reset to reset the horizontal position to 0 seconds when the trigger is running, or to the last position before the trigger was stopped.
7. Press *Previous* to go to the previous marker.

8. Press *Next* to go to the next marker.
Vertical View (Channel)

The Vertical view section describes how to set the vertical scale, position, bandwidth limitation, coupling mode, and attenuation.

Moving the waveform position vertically

Procedure

To move the waveform up or down, turn the vertical position knob for each channel.

Selecting the vertical scale

Procedure

To change the vertical scale, turn the VOLTS/DIV knob; left (down) or right (up).

Range

2mV/Div ~ 10V/Div, 1-2-5 increments

Selecting the coupling mode

Procedure

1. Press the Channel key.

2. Press Coupling repeatedly to select the coupling mode.

Range

DC coupling mode. The whole portion (AC and DC) of the signal appears on the display.
Ground coupling mode. The display shows only the zero voltage level as a horizontal line. This mode is useful for measuring the signal amplitude with respect to the ground level.

AC coupling mode. Only the AC portion of the signal appears on the display. This mode is useful for observing AC waveforms mixed with DC components.

Expand Vertical Scale Center / Ground

Background

Normally when the vertical scale is increased, the scaled image is centered from ground. However a signal with a voltage bias could be obscured when the vertical scale is increased. The Expand Center function expands the image from the center of the signal, rather than ground.

Expand Ground

Position Indicator

Position Indicator
Expand Center

1. Press the Channel key.

2. Press F5 to toggle between Expand Center and Expand Ground.

3. To change the vertical scale, turn the VOLTS/DIV knob; left (down) or right (up).

 The vertical scale indicator on the bottom left of the display changes accordingly.

Inverting the waveform vertically

Procedure

1. Press the Channel key.
2. Press *Invert*. The waveform becomes inverted (upside down) and the Channel indicator in the display shows a down arrow.
Limiting the waveform bandwidth

Background
Bandwidth limitation puts the input signal into a 20MHz (−3dB) low-pass filter. This function is useful for cutting off high frequency noise to see the clear waveform shape.

Procedure
1. Press the Channel key.

2. Press BW Limit to turn on or off the limitation. When turned on, the BW indicator appears next to the Channel indicator in the display.

Example

<table>
<thead>
<tr>
<th>BW Limit Off</th>
<th>BW Limit On</th>
</tr>
</thead>
</table>

Probe attenuation level and type

Background
The probe can be set to either voltage or current. A signal probe has an attenuation switch to lower the original DUT signal level to the oscilloscope input range, if necessary. The probe attenuation selection adjusts the vertical scale so that the voltage or current level on the display reflects the real value, not the attenuated level.
1. Press the Channel key.

2. Press F4 repeatedly to select voltage or current probes.

3. Use the variable knob to edit the voltage or current attenuation.

4. The voltage/current scale in the channel indicator changes accordingly. There is no change in the waveform shape.

<table>
<thead>
<tr>
<th>Range</th>
<th>0.1X~2000X (1-2-5 steps)</th>
</tr>
</thead>
</table>

Note: The attenuation factor adds no influence on the real signal; it only changes the voltage/current scale on the display.
Trigger

The Trigger function configures the conditions by which the oscilloscope captures the incoming signals.

Trigger type

<table>
<thead>
<tr>
<th>Trigger type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge</td>
<td>Triggers when the signal crosses an amplitude threshold in either a positive or negative slope.</td>
</tr>
<tr>
<td>Video</td>
<td>Extracts a sync pulse from a video format signal and triggers on a specific line or field.</td>
</tr>
<tr>
<td>Pulse</td>
<td>Triggers when the pulse width of the signal matches the trigger settings.</td>
</tr>
</tbody>
</table>

Indicators

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Edge/Pulse</th>
<th>Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1, Edge, Rising edge</td>
<td>CH1, Edge, 2.652kHz DC coupling</td>
<td>CH1, Video, Positive polarity, NTSC standard</td>
</tr>
</tbody>
</table>

Trigger parameter

<table>
<thead>
<tr>
<th>Trigger source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1, 2</td>
<td>Channel 1, 2 input signals</td>
</tr>
<tr>
<td>Line</td>
<td>AC mains signal</td>
</tr>
<tr>
<td>Ext</td>
<td>External trigger input signal</td>
</tr>
</tbody>
</table>
Trigger mode

- **Auto**
 - The oscilloscope updates the input signal regardless of the trigger conditions (if there is no trigger event, the oscilloscope generates an internal trigger). Select this mode especially when viewing rolling waveforms at a slow timebase.
 - The Auto trigger status appears in the upper right corner of the display.

- **Single**
 - The oscilloscope acquires the input signals once when a trigger event occurs, then stops acquiring. Pressing the Single key again will repeat the process.
 - The Single trigger status appears in the upper right corner of the display.

- **Normal**
 - The oscilloscope acquires and updates the input signals only when a trigger event occurs.
 - The Normal trigger status appears in the upper right corner of the display.

Holdoff

- The holdoff function defines the waiting period before the DSO starts triggering again after a trigger point. The Holdoff function ensures a stable display.

Video standard

- **NTSC**
 - National Television System Committee
<table>
<thead>
<tr>
<th>Feature</th>
<th>PAL</th>
<th>SECAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase Alternative by Line</td>
<td>SEquential Couleur A Mémoire</td>
</tr>
<tr>
<td>Sync polarity</td>
<td>Positive polarity</td>
<td>Negative polarity</td>
</tr>
<tr>
<td>Video line</td>
<td>Selects the trigger point in the video signal.</td>
<td></td>
</tr>
<tr>
<td>field</td>
<td>1 or 2</td>
<td></td>
</tr>
<tr>
<td>line</td>
<td>1263 for NTSC, 1313 for PAL/SECAM</td>
<td></td>
</tr>
<tr>
<td>Pulse condition</td>
<td>Sets the pulse width (20ns ~ 10s) and the triggering condition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> Longer than</td>
<td>= Equal to</td>
</tr>
<tr>
<td></td>
<td>< Shorter than</td>
<td>≠ Not equal to</td>
</tr>
<tr>
<td>Trigger slope</td>
<td>Triggers on the rising edge.</td>
<td>Triggers on the falling edge.</td>
</tr>
<tr>
<td>Trigger coupling</td>
<td>AC Triggers only on AC component.</td>
<td>DC Triggers on AC+DC component.</td>
</tr>
<tr>
<td>Frequency rejection</td>
<td>LF Puts a high-pass filter and rejects the frequency below 50kHz.</td>
<td>HF Puts a low-pass filter and rejects the frequency above 50kHz.</td>
</tr>
<tr>
<td>Noise rejection</td>
<td>Rejects noise signals.</td>
<td></td>
</tr>
<tr>
<td>Trigger level</td>
<td>Using the trigger level knob moves the trigger point up or down.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Holdoff

Background

The Holdoff function defines the waiting period before DSO starts triggering again after the trigger point. The holdoff function is especially useful for waveforms with two or more repetitive frequencies or periods that can be triggered.

Panel operation

1. Press the Trigger menu key twice.

2. To set the Holdoff time, use the Variable knob. The resolution depends on the horizontal scale.

 Range 40ns~2.5s

 Pressing *Set to Minimum* sets the Holdoff time to the minimum, 40ns.

 Note: The holdoff function is automatically disabled when the waveform update mode is in Roll mode.

Configuring the edge trigger

Procedure

1. Press the Trigger menu key.

2. Press *Type* repeatedly to select edge trigger.
3. Press Source repeatedly to select the trigger source.

 Source
 CH1

 Range
 Channel 1, 2, Line, Ext

4. Press Mode repeatedly to select the Auto or Normal trigger mode. To select the single trigger mode, press the Single key.

 Mode
 Auto

 Range
 Auto, Normal

5. Press Slope/coupling to enter into the trigger slope and coupling selection menu.

6. Press Slope repeatedly to select the trigger slope, rising or falling edge.

 Slope
 Range
 Rising edge, falling edge

7. Press Coupling repeatedly to select the trigger coupling, DC or AC.

 Coupling
 AC

 Range
 DC, AC

8. Press Rejection to select the frequency rejection mode.

 Rejection
 Off

 Range
 LF, HF, Off

9. Press Noise Rej to turn the noise rejection on or off.

 Noise Rej
 Off
Configuring the video trigger

Procedure

1. Press the Trigger menu key.

2. Press Type repeatedly to select video trigger. The video trigger indicator appears at the bottom of the display.

3. Press Source repeatedly to select the trigger source channel.

 Range: Channel 1, 2

4. Press Standard repeatedly to select the video standard.

 Range: NTSC, PAL, SECAM

5. Press Polarity repeatedly to select the video signal polarity.

 Range: positive, negative

10. Press Previous menu to go back to the previous menu.
6. Press Line repeatedly to select the video field line. Use the Variable knob to select the field.

Field NTSC: 1 ~ 262 (Field 2), 1 ~ 263 (Field 1) PAL/SECAM: 1 ~ 312 (Field 2), 1 ~ 313 (Field1)

Configuring the pulse width trigger

Procedure

1. Press the Trigger menu key.

2. Press Type repeatedly to select pulse width trigger. The pulse width trigger indicator appears at the bottom of the display.

3. Press Source repeatedly to select the trigger source.

 Range Channel 1, 2, Ext

4. Press Mode repeatedly to select the trigger mode, Auto or Normal. To select the Single trigger mode, press the Single key.

 Range Auto, Normal
5. Press *When* repeatedly to select the pulse condition. Then use the Variable knob to set the pulse width.

- **Condition**: >, <, =, ≠
- **Width**: 20ns ~ 10s

6. Press *Slope/Coupling* to set trigger slope and coupling.

7. Press *Slope* repeatedly to select the trigger slope, which also appears at the bottom of the display.

- **Range**: Rising edge, falling edge

8. Press *Coupling* repeatedly to select the trigger coupling.

- **Range**: DC, AC

9. Press *Rejection* to select the frequency rejection mode.

- **Range**: LF, HF, Off

10. Press *Noise Rej* to turn the noise rejection on or off.

- **Range**: On, Off
11. Press Previous menu to go back to the previous menu.

Manually triggering the signal

Note: This section describes how to manually trigger the input signals when the oscilloscope does not capture them. This section applies to the Normal and Single trigger mode, since in the Auto trigger mode, the oscilloscope keeps updating the input signal regardless of the trigger conditions.

To acquire the signal regardless of trigger conditions

To acquire the input signal regardless of the trigger condition, press the Force key. The oscilloscope captures the signals once.

In the Single trigger mode

Press the Single key to start waiting for the trigger condition. To break out of the Single mode, press the Run/Stop key. The trigger mode changes to the Normal mode.
Rear Panel USB Port Interface

The USB slave port on the rear panel can be set to auto detect, however occasionally the USB host type cannot be detected. The USB Port function allows the USB host type to be manually or automatically set for the rear panel.

<table>
<thead>
<tr>
<th>USB connection</th>
<th>PC / Printer end</th>
<th>DSO end</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type A, host</td>
<td>Type B, slave</td>
<td>1.1/2.0 (full speed)</td>
</tr>
</tbody>
</table>

Procedure

1. Connect the USB cable to the USB slave port on the DSO.

2. Insert the other end of the USB cable into the PC or Printer USB port.

3. Press the Utility key.

5. Press *USB Port* repeatedly to set the host device.

Range: Printer, PC, Auto Detect
Remote Control Interface

The Remote control interface section describes how to set up the USB interface for PC connection. Remote control command details are described in the DSO Programming Manual. Note that printing to a PictBridge compatible printer and remote control cannot be supported at the same time as the same USB port is used.

<table>
<thead>
<tr>
<th>USB connection</th>
<th>PC / Printer end</th>
<th>DSO end</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type A, host</td>
<td>Type B, slave</td>
<td>1.1/2.0 (full speed)</td>
</tr>
</tbody>
</table>

Procedure

1. Connect the USB cable to the USB slave port.

2. The USB port may need to be configured if the USB port is not automatically detected.

3. When the PC asks for the USB driver, select dso_cdc_1000.inf (Windows XP) or dso_vista_cdc.inf (Vista 32bit) which are downloadable from our website or request to our technical support.

4. On the PC, activate a terminal application such as Hyper Terminal. To check the COM port No., see the Device Manager in the PC. For WindowsXP, select Control panel → System → Hardware tab.
5. Run this query command via the terminal application.
 *idn?
 This command should return the manufacturer, model number, serial number, and firmware version in the following format.
 GW, GDS-1152A-U, XXXXXX, V1.00

6. Configuring the command interface is complete. Refer to the programming manual for the remote commands and other details.
System Settings

The system settings show the oscilloscope’s system information and allow changing the language.

Viewing the system information

Procedure

1. Press the Utility key.

2. Press System Info. The upper half of the display shows the following information.
 - Manufacturer
 - Model
 - Serial number
 - Firmware version
 - Web address

3. Press any other key to go back to the waveform display mode.

Selecting the language

Parameter	Language selection differs according to the region to which the oscilloscope is shipped.
- English | - Chinese (traditional)
- Chinese (simplified) | - Japanese
- Korean | - French
Procedure

1. Press the Utility key.

2. Press Language repeatedly to select the language.
SAVE/RECALL

The save function allows saving display images, waveform data, and panel settings into the oscilloscope’s internal memory or to the front panel USB port. The recall function allows recalling the default factory settings, waveform data, and panel settings from the oscilloscope’s internal memory or from USB.

File Structures

Three types of file are available: display image, waveform file, and panel settings.

Display image file format

<table>
<thead>
<tr>
<th>Format</th>
<th>xxxx.bmp (Windows bitmap format)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>The current display image in 234 x 320 pixels, color mode. The background color can be inverted (Ink saver function).</td>
</tr>
</tbody>
</table>

Waveform file format
Format

`xxxx.csv` (Comma-separated values format which can be opened in spreadsheet applications such as Microsoft Excel)

Files can be saved as two different types of CSV formats. The DSO can recall any of the two formats:

- **Detail**: Contains the waveform amplitude and time of each point (4k/1M/2M) relative to the trigger point.
- **Fast**: Only contains the waveform amplitude data for each point (4k/1M/2M).

Waveform type

- **CH1, 2**: Input channel signal
- **Math**: Math operation result (page 81)

Storage location

- **Internal memory**: The oscilloscope’s internal memory, which can hold 15 waveforms.
- **External USB Flash drive**: A USB flash drive (FAT or FAT32 format) can hold practically an unlimited number of waveforms.
- **Ref A, B**: Two reference waveforms are used as a buffer to recall a waveform in the display. You have to save a waveform into internal memory or to USB, then copy the waveform into the reference waveform slot (A or B), and then recall the reference waveform into the display.
Waveform Memory Depth

The memory depth is limited to 1 M points when both channels are activated or 2M points when only a single channel is activated. The signal must be triggered/stopped to have access to the full memory depth. Therefore when a signal is saved the waveform will be automatically stopped if it is not manually triggered/stopped first.

There are a number of conditions when all of the available memory is not utilized due to a limited number of different sample rates. This can be caused by an un-triggered signal, or a time/div setting that is too fast to display all the points on screen.

Note: 2M point memory lengths are only available for time bases slower than 10ns/div on a single channel, and 1 M point memory lengths are only available for time bases slower than 25ns/div on two channels.

Waveform file contents: other data

A waveform file also includes the following information.

- Memory Length
- Source
- Vertical Units
- Vertical Position
- Horizontal Scale
- Horizontal Mode
- Firmware
- Mode
- Trigger Level
- Probe
- Vertical Scale
- Horizontal Units
- Horizontal Position
- Sampling Period
- Time
- Waveform Data
Setup file format

Format

xxxx.set (proprietary format)

A setup file saves or recalls the following settings.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Acquire</th>
<th>Cursor</th>
<th>Display</th>
<th>Measure</th>
<th>Utility</th>
<th>Horizontal</th>
<th>Trigger</th>
<th>Channel (vertical)</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• mode</td>
<td>• source channel</td>
<td>• dots/vectors</td>
<td>• item</td>
<td>• hardcopy type</td>
<td>• display mode</td>
<td>• trigger type</td>
<td>• vertical scale</td>
<td>• operation type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cursor location</td>
<td>• grid type</td>
<td></td>
<td>• language</td>
<td>• position</td>
<td>• trigger mode</td>
<td>• coupling mode</td>
<td>• vertical position</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Data Logging settings</td>
<td>• scale</td>
<td>• video polarity</td>
<td>• bandwidth limit</td>
<td>• invert on/off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• pulse timing</td>
<td>• on/off</td>
<td>• voltage/current</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(probe)</td>
<td>(probe)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- For Channel (vertical):
 - vertical position
 - invert on/off
 - voltage/current (probe)
 - source channel
 - unit/div
Using the USB file utilities

Background
When a USB flash drive is inserted into the oscilloscope, file utilities (file deletion, folder creation and file/folder renaming) are available from the front panel.

Procedure

1. Insert a USB flash drive into the front panel USB port.

2. Press the Save/Recall key. Select any save or recall function. For example USB Destination in the Save Image function.

3. Press File Utilities. The display shows the USB flash drive contents.

4. Use the Variable knob to move the cursor. Press Select to go into the folder or go back to the previous directory level.

USB flash drive indicator
When a USB flash drive is inserted into the oscilloscope, an indicator appears at the right bottom corner of the display. (The USB flash drive shouldn’t be removed when a file is saved or retrieved from USB).
USB

Creating a new folder / renaming a file or folder

1. Move the cursor to the file or folder location and press New Folder or Rename. The file/folder name and the character map will appear on the display.

2. Use the Variable knob to move the pointer to the characters. Press Enter Character to add a character or Back Space to delete a character.

3. When editing is complete, press Save. The new/renamed file or folder will be saved.

Deleting a folder or file

1. Move the cursor to the folder or file location and press Delete. The message “Press F4 again to confirm this process” appears at the bottom of the display.

2. If the file/folder still needs to be deleted, press Delete again to complete the deletion. To cancel the deletion, press any other key.
Quick Save (HardCopy)

Background
The Hardcopy key works as a shortcut for printing screen images directly to a printer or to save display images, waveform data, and panel settings onto a USB flash drive card.

The Hardcopy key can be configured into three types of operations: save image, save all (image, waveform, setup) and printer.

Using the Save/Recall key can also save files with more options. For details, see page 145.

<table>
<thead>
<tr>
<th>Functionalities</th>
<th>Save image (*.bmp)</th>
<th>Saves the current display image into a USB flash drive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save all</td>
<td>Saves the following items into a USB flash drive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Current display image (*.bmp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Current system settings (*.set)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Current waveform data (*.csv)</td>
<td></td>
</tr>
</tbody>
</table>

Procedure	1. Insert a USB flash drive into the front panel USB port.
	2. Press the Utility key.
	3. Press *Hardcopy Menu*.
4. Press Function repeatedly to select Save Image or Save All.

5. To invert the color in the display image, press Ink Saver. This turns Ink Saver on or off.

6. If Save Image was selected, press Mem Leng repeatedly to select USB Normal or USB 1M/2M. USB Normal and USB 1M/2M sets the waveforms to a 4k and 1M/2M memory length when saving, respectively.

 1M memory length is available when both CH1 and CH2 are active; 2M memory length is available when a single channel is active only.

7. Press the Hardcopy key. The file or folder will be saved to the root directory of the USB flash drive.
Save

This section describes how to save data using the Save/Recall menu.

File type/source/destination

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel setup</td>
<td>Panel settings</td>
<td>Internal memory: S1 ~ S15</td>
</tr>
<tr>
<td>(xxxx.set)</td>
<td></td>
<td>External memory: USB</td>
</tr>
<tr>
<td>Waveform data</td>
<td>Channel 1, 2 Math operation result</td>
<td>Internal memory: W1 ~ W15</td>
</tr>
<tr>
<td>(xxxx.csv)</td>
<td>Reference waveform A, B</td>
<td>Reference waveform A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External memory: USB</td>
</tr>
<tr>
<td>Display image</td>
<td>Display image</td>
<td>External memory: USB</td>
</tr>
<tr>
<td>(xxxx.bmp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save All</td>
<td>Display image (xxxx.bmp)</td>
<td>External memory: USB</td>
</tr>
<tr>
<td></td>
<td>Waveform data (xxxx.csv)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panel settings (xxxx.set)</td>
<td></td>
</tr>
</tbody>
</table>
Saving the panel settings

Procedure

1. (For saving to USB flash drive) Insert the USB flash drive into the front panel USB port.

2. Press the Save/Recall key twice to access the Save menu.

3. Press Save Setup.

4. Press Destination repeatedly to select the saved location. Use the Variable knob to change the internal memory location (S1 ~ S15).

5. Press Save to confirm saving. When completed, a message appears at the bottom of the display.

Note: The file will not be saved if the power is turned off or the USB flash drive is removed before completion.
File utilities

To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 141.

Saving the waveform

Procedure

1. (For saving to USB flash drive) Insert the USB flash drive into the front panel USB port.

2. Press the Save/Recall key twice to access the Save menu.

3. Press Save Waveform.

4. Press Source. Use the Variable knob to select the source signal.

 CH1 ~ CH2 Channel 1 ~ 2 signal

 Math Math operation result (page 81)

 RefA, B Internally stored reference waveforms A, B
5. Press *Destination* repeatedly to select the file destination. Use the Variable knob to select the memory location.

<table>
<thead>
<tr>
<th>Memory</th>
<th>Internal memory, W1 ~ W15</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Normal</td>
<td>Save to the USB flash drive with a 4k waveform memory length.</td>
</tr>
<tr>
<td>USB 1M</td>
<td>Save to the USB flash drive with a 1M waveform memory length. For 2 channel operation only.</td>
</tr>
<tr>
<td>USB 2M</td>
<td>Save to the USB flash drive with a 2M waveform memory length. For single channel operation only.</td>
</tr>
<tr>
<td>Ref</td>
<td>Internal reference waveform, A/B</td>
</tr>
</tbody>
</table>

6. Press *Save* to confirm saving. When completed, a message appears at the bottom of the display.

Note

The file will not be saved if the power is turned off or the USB flash drive is removed from the USB port.

It takes approximately 1 min to save a 2M waveform to the USB drive in fast mode. Detailed mode may take over 10 times longer depending on the speed of the USB flash drive.
File utilities

To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 141.
Saving the display image

Saving the display image can be used as a screen capture or it can be used as a reference waveform.

Procedure

1. Insert the USB flash drive into the front panel USB port. (Image files can only be saved to USB)

2. Press the Save/Recall key twice to access the Save menu.

3. Press Save Image.

4. Press Ink Saver repeatedly to invert the background color (on) or not (off).

5. Note: Destination is set as USB. This cannot be changed.

6. Press Save to confirm saving. When completed, a message appears at the bottom of the display.

Note

The file will not be saved if the power is turned off or the USB flash drive is removed before completion.
File utilities

To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 141.
Saving all (panel settings, display image, waveform)

Procedure

1. (For saving to USB flash drive) Insert the USB flash drive into the front panel USB port.

2. Press the Save/Recall key twice to access the Save menu.

3. Press Save All. The following information will be saved.

 - **Setup file (Axxxx.set)**: Two types of setups are saved: the current panel setting and the last internally saved settings (one of S1 ~ S15).
 - **Display image (Axxxx.bmp)**: The current display image in bitmap format.
 - **Waveform data (Axxxx.csv)**: Two types of waveform data are saved: the currently active channel data and the last internally saved data (one of W1 ~ W15).

4. Press Ink Saver repeatedly to invert the background color (on) or not (off) for the display image.

5. Press Destination.

 - **Destination**: USB 1M
USB Normal
Save to the USB flash drive with a 4k waveform memory length.

USB 1M
Save to the USB flash drive with a 1M waveform memory length. For 2 channel operation only.

USB 2M
Save to the USB flash drive with a 2M waveform memory length. For single channel operation only.

6. Press **Save** to confirm saving. When completed, a message appears at the bottom of the display.

Note
The file will not be saved if the power is turned off or the USB flash drive is removed from the USB port.

It takes approximately 1 min to save a 2M waveform to the USB drive in fast mode. Detailed mode may take over 10 times longer depending on the speed of the USB flash drive.

7. The current waveform(s) (*.CSV), setup file (*.SET) and display image (*.BMP) are saved to a directory (ALLXXXX).

File utilities
To edit the USB drive contents (create/ delete/ rename files and folders), press **File Utilities**. For details, see page 141.
Recall

File type/source/destination

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default panel setup</td>
<td>• Factory installed setting</td>
<td>• Current front panel</td>
</tr>
<tr>
<td>Reference waveform</td>
<td>• Internal memory: A, B</td>
<td>• Current front panel</td>
</tr>
<tr>
<td>Panel setup (DSxxxx.set)</td>
<td>• Internal memory: S1 ~ S15</td>
<td>• Current front panel</td>
</tr>
<tr>
<td></td>
<td>• External memory: USB flash drive</td>
<td></td>
</tr>
<tr>
<td>Waveform data (DSxxxx.csv)</td>
<td>• Internal memory: W1 ~ W15</td>
<td>• Reference waveform A, B</td>
</tr>
<tr>
<td></td>
<td>• External memory: USB flash drive</td>
<td></td>
</tr>
</tbody>
</table>
Recalling the default panel settings

Procedure

1. Press the Save/Recall key.

2. Press Default Setup. The factory installed setting will be recalled.

Setting contents

The following is the default panel setting contents.

Acquisition
- Mode: Normal

Channel
- Coupling: DC
- BW limit: Off
- Invert: Off
- voltage: x1

Cursor
- Source: CH1
- Horizontal: None
- Vertical: None

Display
- Type: Vectors
- Accumulate: Off

Graticule:

Horizontal
- Scale: 2.5us/Div
- Mode: Main Timebase
- H Pos Adj: Fine
- Hor Pos: 0

Math
- Type: + (Add)
- Channel: CH1+CH2
- Position: 0.00 Div
- Unit/Div: 2V

Measure
- Item: Vpp, Vavg, Frequency, Duty cycle, Rise Time

Trigger
- Type: Edge
- Source: Channel1
- Mode: Auto
- Slope: ▲▼
- Coupling: DC
- Rejection: Off
- Noise Rejection: Off
Utility

SaveImage, InkSaver On, Probe squarewave 1kHz 50% duty.
Recalling a reference waveform to the display

Procedure
1. The reference waveform must be stored in advance. See page 147 for details.

2. Press the Save/Recall key.

4. Select the reference waveform, Ref A or Ref B, and press it. The waveform appears on the display and the period and amplitude of the waveform appears in the menu.

5. To clear the waveform from the display, press RefA/B again.

Recalling panel settings

Procedure
1. (For recalling to USB) Insert the USB flash drive into the front panel USB port.

2. Press the Save/Recall key.

4. Press Source repeatedly to select the file source, internal or external memory. Use the Variable knob to change the memory.

 - Memory: Internal memory, S1 ~ S15
 - USB: USB flash drive, DSXXXX.SET. The setup file(s) must be placed in the root directory to be recognized.

5. Press Recall to confirm recalling. When completed, a message appears at the bottom of the display.

Note /!
The file will not be recalled if the power is turned off or the USB flash drive is removed before completion.

File utilities
To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 141.

Recalling a waveform

Procedure
1. (For recalling to USB) Insert the USB flash drive into the front panel USB port.
2. Press the Save/Recall key.

3. Press Recall Waveform. The display shows the available source and destination options.

4. Press Source repeatedly to select the file source, internal memory or USB. Use the Variable knob to change the memory location (W1 ~ W15)/DSXXXX.CSV.

 Memory Internal memory, W1 ~ W15
 USB USB flash drive, DSXXXX.CSV. The waveform file(s) must be placed in the root directory to be loaded.

5. Press Destination. Use the Variable knob to select the memory location.

 RefA, B Internally stored reference waveforms A, B

6. Press Recall to confirm recalling. When completed, a message appears at the bottom of the display.

 Note The file will not be recalled if the power is turned off or the USB flash drive is removed before completion.
File utilities
To edit the USB drive contents (create/ delete/ rename files and folders), press *File Utilities*. For details, see page 141.

Recall Image

Background
Recall Image is useful for recalling reference images that would not be possible using the Recall Waveform function, such as in X-Y mode. Using the Recall Image function will superimpose the reference image on the screen.

Before recalling an image, an image must first be saved to USB, see page 150.

Procedure
1. Insert the USB flash drive into the front panel USB.
2. Press the Save/Recall key.
3. Press Recall Image. The display shows the available source and destination options.

4. Use the Variable knob to choose a file name (DSXXXX.BMP).

 The image file must be placed in the root directory to be recognized.

5. Press Recall to confirm recalling. When completed, a message appears at the bottom of the display.

6. Press Reference Image to turn on /off the current image.

 The file will not be recalled if the power is turned off or the USB flash drive is removed before completion.

File utilities

To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 141.
PRINT

The DSO is able to print screen images directly to a PictBridge compatible printer. The printed images can use the “Ink Saver” feature to print onto a white rather than a black background to reduce the amount of ink used. Note that printing and remote control cannot be used at the same time.

Print (Hardcopy)

Background

The Hardcopy key works as a shortcut for printing screen images directly to a printer or to save display images, waveform data, and panel settings onto USB.

The Hardcopy key can be configured into three types of operations: save image, save all (image, waveform, setup) and printer.

<table>
<thead>
<tr>
<th>USB connection</th>
<th>Printer end</th>
<th>DSO end</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type A, host</td>
<td>Type B, slave</td>
<td>1.1/2.0 (full speed)</td>
</tr>
</tbody>
</table>
Procedure

1. Connect the USB cable to the USB slave port on the DSO rear panel.

2. Insert the other end of the USB cable into the printer USB port.

3. Press the Utility key.

4. Press the More key twice.

5. Press USB Port repeatedly to set the USB Port to Printer.

6. Press the Utility key.

7. Press Hardcopy Menu.

8. Press Function repeatedly to select Printer.
9. To invert the color in the display image, press *Ink Saver*. This turns Ink Saver on or off.

10. To change the default page size, press *Page Size*.

- **Default**: Default printer page setting.
- **4 X 6**: 4 X 6 inches
- **A4**: Standard A4 size

11. Press the Hardcopy key. The current screen image will be printed to the printer.

The Hardcopy key can be used to print to a printer each time until it is configured otherwise.
If the error message “Printer Not Ready” is displayed, please check to ensure the printer is turned on, the USB cable is properly connected, and that the printer is ready.
MAINTENANCE

Two types of maintenance operations are available: calibrating the vertical resolution, and compensating the probe. Run these operations when using the oscilloscope in a new environment.

Vertical Resolution Calibration

Procedure

1. Press the Utility key.

2. Press the More key twice.

3. Press Self Cal Menu.

4. Press Vertical. The message “Set CAL to CH1, then press F5” appears at the bottom of the display.

5. Connect the calibration signal between the rear panel CAL out terminal and the Channel1 input.

7. The Channel1 calibration will complete in less than 5 minutes.

8. When finished, connect the calibration signal to the Channel 2 input and repeat the procedure.

9. When the calibration is complete the display will go back to the previous state.

Probe Compensation

Procedure

1. Connect the probe between the Channel1 input and the probe compensation output (2Vp-p, 1kHz square wave) on the front panel. Set the probe voltage attenuation to x10.

2. Press the Utility key.

3. Press *ProbeComp*.
4. Press `Wavetype` repeatedly to select the standard square wave.

5. Press the Autoset key. The compensation signal will appear in the display.

6. Press the Display key, then `Type` to select the vector waveform.

7. Turn the adjustment point on the probe until the signal edge becomes sharp.
FAQ

- The input signal does not appear in the display.
- I want to remove some contents from the display.
- The waveform does not update (frozen).
- The probe waveform is distorted.
- Autoset does not catch the signal well.
- I want to clean up the cluttered panel settings.
- The accuracy does not match the specifications.
- The oscilloscope will not allow a 2M waveform to be saved.

The input signal does not appear in the display.

Make sure you have activated the channel by pressing the CH key (page 63).

I want to remove some contents from the display.

To clear the math result, press the Math key again (page 81).
To clear the cursor, press the Cursor key again (page 79).
To clear the Help contents, press the Help key again (page 61).
The waveform does not update (frozen).

Press the Run/Stop key to unfreeze the waveform. See page 66 for details. For trigger setting details, see page 123.
If this does not help, press the CH key. If the signal still does not appear, press the Autoset key.

The probe waveform is distorted.

You might need to compensate the probe. For details, see page 167. Note that the frequency accuracy and duty factor are not specified for probe compensation waveforms and therefore it should not be used for other reference purposes.

Autoset does not catch the signal well.

The Autoset function does not catch signals well under 30mV or 2Hz. Please operate the oscilloscope manually. See page 64 for details.

I want to clean up the cluttered panel settings.

Recall the default settings by pressing the Save/Recall key→Default Setting. For default setting contents, see page 60.

The saved display image is too dark on the background.
Use the Inksaver function which reverses the background color. For details, see page 150.
The accuracy does not match the specifications.

Make sure the device is powered on for at least 30 minutes, within +20°C~+30°C. This is necessary to stabilize the unit to match the specification.

The oscilloscope will not allow a 2M waveform to be saved.

Make sure that only 1 channel is active. Make sure that the signal has been triggered and that the STOP or Single key has been pressed. Ensure the time base is slower than 10 ns/div. See page 137.

For more information, contact your local dealer or SEFRAM.
Appendix

Fuse Replacement

Procedure

1. Remove the power cord and remove the fuse socket using a minus driver.

2. Replace the fuse in the holder.
Ratings

T1A, 250V
Specifications

The specifications apply when the oscilloscope is powered on for at least 30 minutes under +20°C~+30°C.

Model-specific specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Bandwidth (−3dB)</th>
<th>Trigger Sensitivity</th>
<th>External Trigger Sensitivity</th>
<th>Rise Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5472DC</td>
<td>DC coupling: DC ~ 70MHz</td>
<td>0.5div or 5mV (DC ~ 25MHz)</td>
<td>~ 50mV (DC~25MHz)</td>
<td>< 5.8ns approx.</td>
</tr>
<tr>
<td></td>
<td>AC coupling: 10Hz ~ 70MHz</td>
<td>1.5div or 15mV (25MHz~70MHz)</td>
<td>~ 100mV (25MHz~70MHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bandwidth Limit</td>
<td>20MHz (~3dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54102DC</td>
<td>DC coupling: DC ~ 100MHz</td>
<td>0.5div or 5mV (DC ~ 25MHz)</td>
<td>~ 50mV (DC~25MHz)</td>
<td>< 3.5ns approx.</td>
</tr>
<tr>
<td></td>
<td>AC coupling: 10Hz ~ 100MHz</td>
<td>1.5div or 15mV (25MHz~100MHz)</td>
<td>~ 100mV (25MHz~100MHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bandwidth Limit</td>
<td>20MHz (~3dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54152DC</td>
<td>DC coupling: DC ~ 150MHz</td>
<td>0.5div or 5mV (DC ~ 25MHz)</td>
<td>~ 50mV (DC~25MHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC coupling: 10Hz ~ 150MHz</td>
<td>1.5div or 15mV (25MHz~150MHz)</td>
<td>~ 100mV (25MHz~100MHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>< 2.3ns approx.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common specifications

<table>
<thead>
<tr>
<th>Vertical</th>
<th>Sensitivity</th>
<th>2mV/div~10V/Div (1-2-5 increments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>± (3% x</td>
<td>Readout</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>See model-specific specifications</td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>See model-specific specifications</td>
<td></td>
</tr>
<tr>
<td>Input Coupling</td>
<td>AC, DC, Ground</td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>1MΩ±2%, ~15pF</td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td>Normal, Invert</td>
<td></td>
</tr>
<tr>
<td>Maximum Input</td>
<td>300V (DC+AC peak), CAT II</td>
<td></td>
</tr>
<tr>
<td>Math Operation</td>
<td>+, -, ×, FFT, FFT rms</td>
<td></td>
</tr>
<tr>
<td>Offset Range</td>
<td>2mV/div~50mV/div: ±0.4V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100mV/div~500mV/div: ±4V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1V/div~5V/div: ±40V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10V/div : ±300V</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>Sources</td>
<td>CH1, CH2, Line, EXT</td>
</tr>
<tr>
<td></td>
<td>Modes</td>
<td>Auto, Normal, Single, TV, Edge, Pulse</td>
</tr>
<tr>
<td></td>
<td>Coupling</td>
<td>AC, DC, LF rej, HF rej, Noise rej</td>
</tr>
<tr>
<td></td>
<td>Sensitivity</td>
<td>See model-specific specifications</td>
</tr>
<tr>
<td>Holdoff</td>
<td>40ns ~ 2.5s</td>
<td></td>
</tr>
<tr>
<td>External trigger</td>
<td>Range</td>
<td>DC: ±15V, AC: ±2V</td>
</tr>
<tr>
<td></td>
<td>Sensitivity</td>
<td>See model-specific specifications</td>
</tr>
<tr>
<td></td>
<td>Input Impedance</td>
<td>1MΩ±2%, ~15pF</td>
</tr>
<tr>
<td></td>
<td>Maximum Input</td>
<td>300V (DC+AC peak), CATII</td>
</tr>
<tr>
<td>Horizontal</td>
<td>Range</td>
<td>1ns/div~50s/div, 1-2.5-5 increment</td>
</tr>
<tr>
<td></td>
<td>Roll</td>
<td>50ms/div – 50s/div</td>
</tr>
<tr>
<td>Feature</td>
<td>Specification</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>Modes</td>
<td>Main, Window, Window Zoom, Roll, X-Y</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.01%</td>
<td></td>
</tr>
<tr>
<td>Pre-Trigger</td>
<td>10 div maximum</td>
<td></td>
</tr>
<tr>
<td>Post-Trigger</td>
<td>1000 div</td>
<td></td>
</tr>
<tr>
<td>X-Y Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-Axis Input</td>
<td>Channel 1</td>
<td></td>
</tr>
<tr>
<td>Y-Axis Input</td>
<td>Channel 2</td>
<td></td>
</tr>
<tr>
<td>Phase Shift</td>
<td>±3° at 100kHz</td>
<td></td>
</tr>
<tr>
<td>Signal Acquisition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time</td>
<td>1G Sa/s maximum</td>
<td></td>
</tr>
<tr>
<td>Equivalent</td>
<td>25G Sa/s maximum</td>
<td></td>
</tr>
<tr>
<td>Vertical Resolution</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Record Length</td>
<td>Maximum; 2M points (1 channel), 1M points (2 channels)</td>
<td></td>
</tr>
<tr>
<td>Acquisition</td>
<td>Normal, Peak Detect, Average</td>
<td></td>
</tr>
<tr>
<td>Peak Detection</td>
<td>10ns (500ns/div ~ 50s/div)</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2, 4, 8, 16, 32, 64, 128, 256</td>
<td></td>
</tr>
<tr>
<td>Cursors and Measurement</td>
<td>Voltage</td>
<td>Vpp, Vamp, Vavg, Vrms, Vhi, Vlo, Vmax, Vmin, Rise Preshoot/ Overshoot, Fall Preshoot/ Overshoot</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Time</td>
<td>Freq, Period, Rise Time, Fall Time, Width, – Width, Duty Cycle</td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td>FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF</td>
<td></td>
</tr>
<tr>
<td>Cursors</td>
<td>Voltage difference (ΔV) and Time difference (ΔT) between cursors</td>
<td></td>
</tr>
<tr>
<td>Auto Counter</td>
<td>Resolution: 6 digits, Accuracy: ±2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal source: All available trigger source except the Video trigger</td>
<td></td>
</tr>
<tr>
<td>Control Panel Function</td>
<td>Autoset</td>
<td>Automatically adjust Vertical Volt/div, Horizontal Time/div, and Trigger level</td>
</tr>
<tr>
<td></td>
<td>Save/Recall</td>
<td>Up to 15 sets of measurement conditions and waveforms</td>
</tr>
<tr>
<td>Display</td>
<td>LCD</td>
<td>5.7 inch, TFT, brightness adjustable</td>
</tr>
<tr>
<td></td>
<td>Resolution (dots)</td>
<td>234 (Vertical) x 320 (Horizontal)</td>
</tr>
<tr>
<td></td>
<td>Graticule</td>
<td>8 x 10 divisions</td>
</tr>
<tr>
<td></td>
<td>Display Contrast</td>
<td>Adjustable</td>
</tr>
<tr>
<td>Interface</td>
<td>USB Slave Connector</td>
<td>USB1.1 & 2.0 full speed compatible (flash disk not supported)</td>
</tr>
<tr>
<td></td>
<td>USB Host</td>
<td>Image (BMP) and waveform data (CSV)</td>
</tr>
<tr>
<td>Probe Compensation Signal</td>
<td>Frequency range</td>
<td>1kHz ~ 100kHz adjustable, 1kHz step</td>
</tr>
<tr>
<td></td>
<td>Duty cycle</td>
<td>5% ~ 95% adjustable, 5% step</td>
</tr>
<tr>
<td></td>
<td>Amplitude</td>
<td>2Vpp±3%</td>
</tr>
<tr>
<td>Power Source</td>
<td>Line Voltage</td>
<td>100V240V AC, 47Hz63Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Power Consumption</td>
<td>18W, 40VA maximum</td>
<td></td>
</tr>
<tr>
<td>Fuse Rating</td>
<td>1A slow, 250V</td>
<td></td>
</tr>
<tr>
<td>Operation Environment</td>
<td>Ambient temperature 0 ~ 50°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relative humidity ≤ 80%, 40°C or below</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 45%, 41°C~50°C</td>
<td></td>
</tr>
<tr>
<td>Storage Environment</td>
<td>Storage Temperature: -10°C~60°C, no condensation-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relative humidity 93% @ 40°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65% @ 41°C~60°C</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>310(W) x 142(H) x 140(D) mm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 2.5kg</td>
<td></td>
</tr>
</tbody>
</table>
Probe Specifications

Probe for 5472DC

<table>
<thead>
<tr>
<th>Applicable model & probe</th>
<th>5472DC GTP-070A-4*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position x 10</td>
<td></td>
</tr>
<tr>
<td>Attenuation Ratio</td>
<td>10:1</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 70MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>10MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>28pF~32pF</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>≤600Vpk, Derating with frequency</td>
</tr>
<tr>
<td>Position x 1</td>
<td></td>
</tr>
<tr>
<td>Attenuation Ratio</td>
<td>1:1</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 6MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>1MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>120pF~220pF</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>≤200Vpk, Derating with frequency</td>
</tr>
<tr>
<td>Operating Cond.</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>–10°C ~ 50°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>≤85%</td>
</tr>
<tr>
<td>Safety Standard</td>
<td>EN 61010-031 CAT II</td>
</tr>
</tbody>
</table>
Probe for 54102DC

<table>
<thead>
<tr>
<th>Applicable model & probe</th>
<th>54102DC GTP-100A-4*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position x 10</td>
<td></td>
</tr>
<tr>
<td>Attenuation Ratio</td>
<td>10:1</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 100MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>10MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>14.5~17.5pF approx.</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>≤600Vpk, Derating with frequency</td>
</tr>
<tr>
<td>Position x 1</td>
<td></td>
</tr>
<tr>
<td>Attenuation Ratio</td>
<td>1:1</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 6MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>1MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>85~115pF approx.</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>≤200Vpk, Derating with frequency</td>
</tr>
<tr>
<td>Operating Cond.</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>−10°C ~ 50°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>≤85% @35°C</td>
</tr>
<tr>
<td>Safety Standard</td>
<td>EN 61010-031 CAT II</td>
</tr>
</tbody>
</table>
Probe for 54152DC

<table>
<thead>
<tr>
<th>Applicable model & probe</th>
<th>54152DC & GTP-150A-2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position x 10</td>
<td>Attenuation Ratio 10:1</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 150MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>10MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>17pF approx.</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>500V CAT I, 300V CAT II (DC+Peak AC) Derating with frequency</td>
</tr>
<tr>
<td>Position x 1</td>
<td>Attenuation Ratio 1:1</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 6MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>1MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>47pF approx.</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>300V CAT I, 150V CAT II (DC+Peak AC) Derating with frequency</td>
</tr>
</tbody>
</table>

Operating Cond.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>–10°C ~ 55°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>≤85% @35°C</td>
</tr>
</tbody>
</table>

Safety Standard

| | EN 61010-031 CAT II |

Note: probes name are indicative and can be changed with similar specifications probes.
Dimensions
EC Declaration of Conformity
SEFRAM
32, rue Edouard MARTEL
F42009 – SAINT-ETIENNE Cedex 2

Phone: + 33 4 77 59 01 01
Fax: +33 4 77 57 23 23
Web: www.sefram.fr
E-mail: sales@sefram.fr