Table of Contents

SAFETY INSTRUCTIONS 10
Safety Symbols ...10
Safety Guidelines ...11
Power cord for the United Kingdom15

GETTING STARTED 16
Main Features ...16
Panel Overview ...18
Front Panel ...18
Rear Panel ..23
Display ..24
Setting up the Oscilloscope 26

QUICK REFERENCE 29
Menu Tree and Shortcuts 29
CH1/CH2 key ...30
Cursor key 1/2 ..31
Cursor key 2/2 ..31
Display key ..33
Autoset key ...33
Hardcopy key ..33
Help key ...34
Horizontal menu key35
Math key 1/2 (+/-)35
Math key 2/2 (FFT)36
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure key</td>
<td>37</td>
</tr>
<tr>
<td>Run/Stop key</td>
<td>37</td>
</tr>
<tr>
<td>Save/Recall key 1/9</td>
<td>38</td>
</tr>
<tr>
<td>Save/Recall key 2/9</td>
<td>38</td>
</tr>
<tr>
<td>Save/Recall key 3/9</td>
<td>39</td>
</tr>
<tr>
<td>Save/Recall key 4/9</td>
<td>39</td>
</tr>
<tr>
<td>Save/Recall key 5/9</td>
<td>40</td>
</tr>
<tr>
<td>Save/Recall key 6/9</td>
<td>40</td>
</tr>
<tr>
<td>Save/Recall key 7/9</td>
<td>42</td>
</tr>
<tr>
<td>Save/Recall key 8/9</td>
<td>43</td>
</tr>
<tr>
<td>Save/Recall key 9/9</td>
<td>43</td>
</tr>
<tr>
<td>Trigger key 1/5</td>
<td>45</td>
</tr>
<tr>
<td>Trigger key 2/5</td>
<td>45</td>
</tr>
<tr>
<td>Trigger key 3/5</td>
<td>47</td>
</tr>
<tr>
<td>Trigger key 4/5</td>
<td>47</td>
</tr>
<tr>
<td>Trigger key 5/5</td>
<td>49</td>
</tr>
<tr>
<td>Utility key 1/10 (Utility #1)</td>
<td>49</td>
</tr>
<tr>
<td>Utility 2/10 (Utility #2)</td>
<td>51</td>
</tr>
<tr>
<td>Utility key 3/10 (Utility #3)</td>
<td>52</td>
</tr>
<tr>
<td>Utility key 4/10 (Hardcopy -Save All)</td>
<td>52</td>
</tr>
<tr>
<td>Utility key 5/10 (Hardcopy -Save Image)</td>
<td>52</td>
</tr>
<tr>
<td>Utility key 6/10 (Probe compensation)</td>
<td>54</td>
</tr>
<tr>
<td>Utility key 7/10 (Go-NoGo)</td>
<td>54</td>
</tr>
<tr>
<td>Utility key 8/10 (Data Logging 1/2)</td>
<td>55</td>
</tr>
<tr>
<td>Utility key 9/10 (Data Logging 2/2)</td>
<td>55</td>
</tr>
<tr>
<td>Utility key 10/10 (Self CAL Menu)</td>
<td>56</td>
</tr>
<tr>
<td>Default Settings</td>
<td>57</td>
</tr>
<tr>
<td>Built-in Help</td>
<td>58</td>
</tr>
<tr>
<td>MEASUREMENT</td>
<td>60</td>
</tr>
</tbody>
</table>
Basic Measurements ... 60
Activating a channel ... 60
Using Autoset ... 61
Running and stopping the trigger ... 62
Changing the horizontal position and scale 63
Changing the vertical position and scale 64
Using the probe compensation signal 66
Automatic Measurements ... 68
Measurement items .. 68
Automatically measuring the input signals 71
Cursor Measurements .. 72
Using the horizontal cursors .. 72
Using the vertical cursors .. 73
Math Operations ... 75
Overview .. 75
Adding, subtracting or multiplying signals 76
Using the FFT function ... 77
Go No-Go Testing ... 79
Overview .. 79
Edit: NoGo When .. 80
Edit: Source ... 80
Edit: NoGo Violation Conditions .. 82
Edit: Template (boundary) ... 82
Run Go-NoGo Tests ... 87
Data Logging ... 88
Overview .. 88
Edit: Source ... 89
Edit: Setup Parameters .. 89
Run Data logging ... 91
CONFIGURATION ... 92

Acquisition.. 92
 Selecting the acquisition mode.................................. 92
 Real time vs Equivalent time sampling mode.............. 95

Display ... 96
 Selecting vector or dot drawing................................ 96
 Accumulating the waveform...................................... 96
 Adjusting the display contrast................................. 97
 Selecting the display grid.. 97

Horizontal View.. 99
 Moving the waveform position horizontally.............. 99
 Selecting the horizontal scale................................. 99
 Selecting the waveform update mode....................... 100
 Zooming the waveform horizontally........................ 102
 Viewing waveforms in the X-Y mode...................... 104

Vertical View (Channel).. 106
 Moving the waveform position vertically.................. 106
 Selecting the vertical scale..................................... 106
 Selecting the coupling mode.................................... 106
 Inverting the waveform vertically.......................... 107
 Limiting the waveform bandwidth........................... 108

Trigger.. 109
 Trigger type.. 109
 Trigger parameter.. 110
 Configuring the edge trigger................................... 112
 Configuring the video trigger................................. 114
 Configuring the pulse width trigger...................... 115
 Manually triggering the signal............................... 116

Rear Panel USB Port Interface... 118
System Settings...120
 Viewing the system information.................................120
 Selecting the language..120

SAVE/RECALL ...122

File Structures..122
 Display image file format...122
 Waveform file format...122
 Setup file format...125
 Using the USB file utilities.......................................126

Quick Save (HardCopy)...128

Save..130
 File type/source/destination...130
 Saving the panel settings...131
 Saving the waveform..132
 Saving the display image..133
 Saving all (panel settings, display image, waveform)
 ..135

Recall..137
 File type/source/destination...137
 Recalling the default panel settings.............................138
 Recalling a reference waveform to the display..............140
 Recalling panel settings..140
 Recalling a waveform...141

MAINTENANCE ..144

Vertical Resolution Calibration ..144

Probe Compensation..145
FAQ

The input signal does not appear in the display......147
I want to remove some contents from the display...147
The waveform does not update (frozen)....................149
The probe waveform is distorted..........................149
AutoSet does not catch the signal well..................149
I want to clean up the cluttered panel settings........149
The saved display image is too dark on the background..149
The accuracy does not match the specifications......151

APPENDIX

Fuse Replacement..152
Specifications...154
 Model-specific specifications...154
 Common specifications...155
Probe Specifications ...159
 Probe for 5352DC and 5372DC..159
 Probe for 53102DC...160
 Dimensions...161
SAFETY INSTRUCTIONS

This chapter contains important safety instructions that should be followed when operating and storing the oscilloscope. Read the following before any operation to ensure your safety and to keep the oscilloscope in the best condition.

Safety Symbols

These safety symbols may appear in this manual or on the oscilloscope.

⚠️ WARNING Warning: Identifies conditions or practices that could result in injury or loss of life.

⚠️ CAUTION Caution: Identifies conditions or practices that could result in damage to the oscilloscope or to other objects or property.

✨ DANGER High Voltage

⚠️ Attention: Refer to the Manual

✓ Protective Conductor Terminal
Earth (Ground) Terminal

Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.

Safety Guidelines

General Guideline

- Make sure the BNC input voltage does not exceed 300V peak.
- Never connect a hazardous live voltage to the ground side of the BNC connectors. It might lead to fire and electric shock.
- Do not place heavy objects on the oscilloscope.
- Avoid severe impact or rough handling that may damage the oscilloscope.
- Avoid discharges of static electricity on or near the oscilloscope.
- Use only mating connectors, not bare wires, for the terminals.
- Do not block the cooling fan vent.
- Do not perform measurements at power sources and building installation sites (Note below).
- The oscilloscope should only be disassembled by a qualified technician.
(Measurement categories) EN 61010-1:2001 specifies the measurement categories and their requirements as follows. The OSCILLOSCOPE falls under category II.

- Measurement category IV is for measurement performed at the source of a low-voltage installation.
- Measurement category III is for measurement performed in a building installation.
- Measurement category II is for measurement performed on circuits directly connected to a low voltage installation.
- Measurement category I is for measurements performed on circuits not directly connected to Mains.

Power Supply

WARNING

- AC Input voltage: 100 ~ 240V AC, 47 ~ 63Hz
- The power supply voltage should not fluctuate more than 10%.
- Connect the protective grounding conductor of the AC power cord to an earth ground.

Fuse

WARNING

- Fuse type: T1A/250V
- To ensure fire protection, replace the fuse only with the specified type and rating.
- Disconnect the power cord before replacing the fuse.
- Make sure the cause of fuse blowout is fixed before replacing the fuse.

Cleaning the oscilloscope

- Disconnect the power cord before cleaning the oscilloscope.
- Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid into the oscilloscope.
- Do not use chemicals containing harsh products such as benzene, toluene, xylene, and acetone.
Operation Environment
- Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)
- Relative Humidity: ≤ 80%, 40°C or below
 - ≤ 45%, 41°C~50°C
- Altitude: < 2000m
- Temperature: 0°C to 50°C

(Pollution Degree) EN 61010-1:2001 specifies pollution degrees and their requirements as follows. The oscilloscope falls under degree 2.

Pollution refers to “addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity”.

- Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
- Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected.
- Pollution degree 3: Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.

Storage Environment
- Location: Indoor
- Storage Temperature: -10°C~60°C, no condensation-
- Relative Humidity: 93% @ 40°C
 - 65% @ 41°C ~60°C
Disposal

Do not dispose this instrument as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.
Power cord for the United Kingdom

When using the oscilloscope in the United Kingdom, make sure the power cord meets the following safety instructions.

NOTE: This lead/appliance must only be wired by competent persons

⚠️ WARNING: THIS APPLIANCE MUST BE EARTHED

IMPORTANT: The wires in this lead are coloured in accordance with the following code:

Green/Yellow: Earth
Blue: Neutral
Brown: Live (Phase)

As the colours of the wires in main leads may not correspond with the coloured marking identified in your plug/appliance, proceed as follows:

The wire which is coloured Green & Yellow must be connected to the Earth terminal marked with either the letter E, the earth symbol ⬇️ or coloured Green/Green & Yellow.

The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.

The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.

If in doubt, consult the instructions provided with the equipment or contact the supplier.

This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, a cable of 0.75mm² should be protected by a 3A or 5A fuse. Larger conductors would normally require 13A types, depending on the connection method used.

Any exposed wiring from a cable, plug or connection that is engaged in a live socket is extremely hazardous. If a cable or plug is deemed hazardous, turn off the mains power and remove the cable, any fuses and fuse assemblies. All hazardous wiring must be immediately destroyed and replaced in accordance to the above standard.
GETTING STARTED

The Getting started chapter introduces the oscilloscope’s main features, appearance, and set up procedure.

Main Features

<table>
<thead>
<tr>
<th>Model name</th>
<th>Frequency bandwidth</th>
<th>Input channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>5352DC</td>
<td>DC –50MHz (–3dB)</td>
<td>2</td>
</tr>
<tr>
<td>5372DC</td>
<td>DC – 70MHz (–3dB)</td>
<td>2</td>
</tr>
<tr>
<td>53102DC</td>
<td>DC – 100MHz (–3dB)</td>
<td>2</td>
</tr>
</tbody>
</table>

Performance

- 250MSa /S real-time sampling rate
- 25GS/s equivalent-time sampling rate
- Up to 10ns peak detection
- 2mV~10V vertical scale

Features

- 5.7 inch color TFT display
- Saving and recalling setups and waveforms
- 19 automatic measurements
- Multi-language menu (12 languages)
- Math operation: Addition, Subtraction, FFT
- Data logging
- Go-NoGo testing
- Edge, video, pulse width trigger
- Compact size: (W) 310 x (D) 140 x (H) 142 mm

Interface

- USB 2.0 full-speed interface for saving and recalling data
- Calibration output
- External trigger input
- USB B type (slave) interface for remote control
Panel Overview

Front Panel

LCD display
TFT color, 320 x 234 resolution, wide angle view LCD display.

Function keys:
- F1 (top) to F5 (bottom)
 - Activates the functions which appear in the left side of the LCD display.

Variable knob
- Increases or decreases values and moves to the next or previous parameter.

Acquire key
- Configures the acquisition mode (page 92).

Display key
- Configures the display settings (page 96).
Cursor key Runs cursor measurements (page 72).

(Continued on next page)
Utility key

Configures the Hardcopy function (page 128), shows the system status (page 120), selects the menu language (page 120), runs the self calibration (page 144), configures the probe compensation signal (page 145), and selects the USB host type (page 118).

Help key

Shows the Help contents on the display (page 58).

Autoset key

Automatically configures the horizontal, vertical, and trigger settings according to the input signal (page 61).

Measure key

Configures and runs automatic measurements (page 68).

Save/Recall key

Saves and recalls images, waveforms, or panel settings (page 122).

Hardcopy key

Stores images, waveforms, or panel settings to USB (page 128).

Run/Stop key

Runs or stops triggering (page 62).

Trigger level knob

Sets the trigger level (page 109).

Trigger menu key

Configures the trigger settings (page 109).

Single trigger key

Selects the single triggering mode (page 116).
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger force key</td>
<td>Acquires the input signal once regardless of the trigger condition at the time (page 116).</td>
</tr>
<tr>
<td>Horizontal menu key</td>
<td>Configures the horizontal view (page 99).</td>
</tr>
<tr>
<td>Horizontal position knob</td>
<td>Moves the waveform horizontally (page 99).</td>
</tr>
<tr>
<td>TIME/DIV knob</td>
<td>Selects the horizontal scale (page 99).</td>
</tr>
<tr>
<td>Vertical position knob</td>
<td>Moves the waveform vertically (page 106).</td>
</tr>
<tr>
<td>CH1/CH2 key</td>
<td>Configures the vertical scale and coupling mode for each channel (page 106).</td>
</tr>
<tr>
<td>VOLTS/DIV knob</td>
<td>Selects the vertical scale (page 106).</td>
</tr>
<tr>
<td>Input terminal</td>
<td>Accepts input signals: 1MΩ±2% input impedance, BNC terminal.</td>
</tr>
<tr>
<td>Ground terminal</td>
<td>Accepts the DUT ground lead to achieve a common ground.</td>
</tr>
<tr>
<td>MATH key</td>
<td>Performs math operations (page 75).</td>
</tr>
<tr>
<td>USB port</td>
<td>Facilitates transferring waveform data, display images, and panel settings (page 126).</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Probe compensation output</td>
<td>Outputs a 2Vp-p, square signal for compensating the probe (page 145) or demonstration.</td>
</tr>
<tr>
<td>External trigger input</td>
<td>Accepts an external trigger signal (page 110).</td>
</tr>
<tr>
<td>Power switch</td>
<td>Powers the oscilloscope on or off.</td>
</tr>
</tbody>
</table>
Rear Panel

Power cord socket

Power cord socket accepts the AC mains, 100 ~ 240V, 50/60Hz.

The fuse socket holds the AC main fuse, T1A/250V.

For the fuse replacement procedure, see page 152.

Fuse socket

USB slave port

Accepts a type B (slave) male USB connector for remote control of the oscilloscope (page 118).

Calibration output

Outputs the calibration signal used in vertical scale accuracy calibration (page 144).

Security lock slot

Standard laptop security lock slot for ensuring the security of the DSO.
Display

![Waveform display diagram]

Waveforms

<table>
<thead>
<tr>
<th></th>
<th>Channel 1: Yellow</th>
<th>Channel 2: Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger status</td>
<td>Trig’d</td>
<td>A signal is being triggered</td>
</tr>
<tr>
<td></td>
<td>Trig?</td>
<td>Waiting for a trigger condition</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>Updating the input signal regardless of trigger conditions</td>
</tr>
<tr>
<td></td>
<td>STOP</td>
<td>Triggering is stopped</td>
</tr>
</tbody>
</table>

For trigger setting details, see page 108.

Input signal frequency

Updates the input signal frequency (the trigger source signal) in real-time.

“< 2Hz” Indicates that the signal frequency is less than the lower frequency limit (2Hz) and thus not accurate.
<table>
<thead>
<tr>
<th>Trigger configuration</th>
<th>Shows the trigger source, type, and slope. In case of the Video trigger, shows the trigger source and polarity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal status</td>
<td>Shows the channel configurations: coupling mode, vertical scale, and horizontal scale.</td>
</tr>
<tr>
<td>Vertical status</td>
<td></td>
</tr>
</tbody>
</table>
Setting up the Oscilloscope

Background

This section describes how to set up the oscilloscope properly including adjusting the handle, connecting a signal, adjusting the scale, and compensating the probe. Before operating the oscilloscope in a new environment, run these steps to make sure the oscilloscope is functionally stable.

Procedure

1. Pull both bases of the handle out slightly.

2. Turn to one of the three preset positions.

3. Connect the power cord.

4. Press the power switch. The display will become active in approximately 10 seconds.

5. Reset the system by recalling the factory settings. Press the Save/Recall key, then Default Setup. For details regarding the factory settings, see page 57.
6. Connect the probe between the Channel1 input terminal and probe compensation signal output (2Vp-p, 1kHz square wave).

7. Set the probe attenuation voltage to x10.

8. Press the Autoset key. A square waveform will appear in the center of the display. For details on Autoset, see page 61.

9. Press the Display key, then Type and select the vector waveform type.
10. Turn the adjustment point on the probe to flatten the square waveform edge.

11. Setting up the oscilloscope is complete. You may continue with the other operations.

Measurement: page 60 Configuration: page 92
QUICK REFERENCE

This chapter lists the oscilloscope menu tree, operation shortcuts, built-in help coverage, and default factory settings. Use this chapter as a handy reference to access the oscilloscope functions.

Menu Tree and Shortcuts

<table>
<thead>
<tr>
<th>Conventions</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>= Press the functional key for “Normal”</td>
</tr>
<tr>
<td>Average↔</td>
<td>= Repeatedly press the functional key for “Average”</td>
</tr>
<tr>
<td>Normal ~ Average</td>
<td>= Select a menu from “Normal” to “Average” and press its functionality key</td>
</tr>
<tr>
<td>Normal→VAR ◇</td>
<td>= Press the functionality key for “Normal”, and then use the Variable knob</td>
</tr>
</tbody>
</table>
Select acquisition mode
Normal ~ Peak-Detect

Select average number
Average

Turn Delay on/off

Sample Rate
500MS/s

CH1/CH2 key

Turn channel on/off
CH 1/2

Select coupling mode
Coupling

Invert waveform
Invert

Turn bandwidth limit on/off
BW Limit

Select probe attenuation
Probe
Cursor key 1/2

Cursor

Turn cursor on/off

Cursor

Move X1 cursor

X1 → VAR

Move X2 cursor

X2 → VAR

Move both X1 and X2 cursor

X1X2 → VAR

Switch to Y cursor

X ↔ Y

Cursor key 2/2

Cursor

Turn cursor on/off

Cursor

Move Y1 cursor

Y1 → VAR

Move Y2 cursor

Y2 → VAR

Move both Y1 and Y2 cursor

Y1Y2 → VAR

Switch to X cursor
X ↔ Y
Display key

- **Display key**: Select waveform type
- **Type**: Waveform accumulate On/Off
- **Vectors/Dots**: On/Off
- **Accumulate**: Refresh accumulation
- **Refresh**: Set display contrast
- **Contrast**: → VAR
- **Full**: Select display grid

Autoset key

- **Autoset key**: Automatically find the signal and set the scale

Hardcopy key

- **Hardcopy key**: → See Utility key (page 49)
Help key

Turn help mode on/off

Help ✅
Horizontal menu key

<table>
<thead>
<tr>
<th>MENU</th>
<th>Select main (default) display</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main</td>
</tr>
<tr>
<td>Main</td>
<td>Select window mode</td>
</tr>
<tr>
<td></td>
<td>Window → TIME/DIV</td>
</tr>
<tr>
<td>Window</td>
<td>Zoom in window mode</td>
</tr>
<tr>
<td>Window Zoom</td>
<td></td>
</tr>
<tr>
<td>Roll</td>
<td>Select window roll mode</td>
</tr>
<tr>
<td>Roll</td>
<td>Select XY mode</td>
</tr>
<tr>
<td>XY</td>
<td></td>
</tr>
</tbody>
</table>

Math key 1/2 (+/-)

<table>
<thead>
<tr>
<th>MATH</th>
<th>Math on/off</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Math</td>
</tr>
<tr>
<td>Operation CH1+CH2</td>
<td>Select math operation type (+/-/FFT)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Position 0.00 Div</td>
<td>Set result position</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit/Div 2V</td>
<td>Math result Volt/Div</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Math key 2/2 (FFT)

Math on/off

Math

Select math operation type (+/-/FFT)

Operation

Select FFT source channel

Source

Select FFT window

Window

Select FFT result position

Vertical →VAR

Select vertical scale

Unit/Div
Measure key

Turn on/off measurement

Select measurement type

Select measurement item

Go back to previous menu

Run/Stop key

Freeze/unfreeze waveform or trigger
Save/Recall key 1/9

Switch to Save or Recall menu

Recall default setup
Default Setup

Save/Recall key 2/9

Select other menu
Recall Setup

Select setup source
Source \(\rightarrow\) VAR

Recall setup
Recall

Go to USB file utilities
File Utilities
Save/Recall key 3/9

Recall Waveform
- Select other menu
- Recall Waveform
- Select waveform source
- Source \(\rightarrow\) VAR
- Select waveform destination
- Destination \(\rightarrow\) VAR
- Recall waveform
- Recall
- Go to USB file utilities
- File Utilities

Save/Recall key 4/9

Display Refs.
- Select other menu
- Display Refs.
- Turn ref. waveform A on/off
- Ref.A
- Turn ref. waveform B on/off
- Ref.B
Save/Recall key 5/9

Save Setup

Select other menu
Save Setup

Select destination
Destination → VAR

Save setup
Save

Go to USB file utilities
File Utilities

Save/Recall key 6/9

Save Waveform

Select other menu
Save Waveform

Select source
Source → VAR

Select destination
Destination → VAR

Save waveform
Save

Go to USB file utilities
File Utilities
Save/Recall key 7/9

Select other menu

Save Image

Turn on/off ink saver

Ink Saver

Save image

Save

Go to USB file utilities

File Utilities

Save Image

Ink Saver

Destination

USB

Save

File Utilities

(USB only) To File Utilities
Save/Recall key 8/9

Save All

- Select other menu
- Save All

Ink Saver

- Turn on/off ink saver
- Ink Saver

Destination

- Select destination
- Destination → VAR

Save all

Save

Go to USB file utilities

File Utilities

Save/Recall key 9/9

File Utilities

- Select file/folder

New Folder/Rename

- Create or rename folder/file

Rename

- New Folder/ Rename

Delete

- Delete folder/file

Previous Menu

- Go to previous menu
Previous menu
Trigger key 1/5

Select Trigger type
Type

Trigger key 2/5

Select video trigger type
Type

Select trigger source
Source

Select video standard
Standard

Select video polarity
Polarity

Select video field/line
Line→VAR
Trigger key 3/5

Edge Trigger

- **Type**
 - Edge

- **Source**
 - CH1

- **Slope / Coupling**
 - To Slope/Coupling

- **Mode**
 - Auto

Select edge trigger type

Select trigger source

Go to slope/coupling menu (page 49)

Select trigger mode

Trigger key 4/5

Pulse Trigger

- **Type**
 - Pulse

- **Source**
 - CH1

- **When**
 - $<$ 20.0ns

- **Slope / Coupling**
 - To Slope/Coupling

- **Mode**
 - Auto

Select pulse trigger type

Select trigger source

Select pulse trigger condition and pulse width

Go to slope/coupling menu (page 49)

Select trigger mode
Trigger key 5/5

- Select trigger slope type
 - Slope

- Select trigger coupling mode
 - Coupling

- Select frequency rejection
 - Rejection

- Turn noise rejection on/off
 - Noise Rej

- Go back to previous menu
 - Previous Menu

Utility key 1/10 (Utility #1)

- Go to hardcopy menu
 - Hardcopy

- Go to probe compensation menu
 - ProbeComp

- Select language
 - Language

- Show system information
 - System Info.

- Go to the next Utility menu
Utility 2/10 (Utility #2)

Go to the Go-NoGo menu

Go-NoGo

Set the NoGo conditions to inside /outside limits

No Go When

Go to the Data Logging Menu

Data Logging

Go to the next Utility menu

More
Utility key 3/10 (Utility #3)

Calibration
- Self CAL Menu → To Self CAL menu
- Enter self calibration
- Self CAL

- More → To Utility #1 menu
- Go to the first Utility menu
- More

Utility key 4/10 (Hardcopy - Save All)

Hardcopy
- Function
 - Save All
 - SaveImage/SaveAll
 - Ink Saver
 - On/Off
- Select Hardcopy function
- Function
- Turn on/off Ink saver
- Ink Saver

- Previous Menu
- Go to previous menu
- Previous Menu

Utility key 5/10 (Hardcopy - Save Image)

Hardcopy - Save Image
- Function
 - Save Image
 - Ink Saver
 - On/Off
- Select Hardcopy function
- Function
- Turn on/off Inksaver
Ink Saver

Go to previous menu

Previous Menu
Utility key 6/10 (Probe compensation)

<table>
<thead>
<tr>
<th>Probe compensation</th>
<th>Select probe compensation signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave Type</td>
<td>Wave Type</td>
</tr>
<tr>
<td>Frequency</td>
<td>Set frequency for square wave</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>Set duty cycle for square wave</td>
</tr>
<tr>
<td>Default</td>
<td>Go to previous menu</td>
</tr>
</tbody>
</table>

Utility key 7/10 (Go-NoGo)

<table>
<thead>
<tr>
<th>Utility key 7/10 (Go-NoGo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch between templates</td>
</tr>
<tr>
<td>Template</td>
</tr>
<tr>
<td>Select the template source</td>
</tr>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Set the tolerance (%)</td>
</tr>
<tr>
<td>Tolerance</td>
</tr>
<tr>
<td>Save & Create</td>
</tr>
<tr>
<td>Go back to previous menu</td>
</tr>
</tbody>
</table>
Utility key 8/10 (Data Logging 1/2)

Data logging

- **Data logging**: Turn Data Logging On/Off
- **Source**: Set the logging source
- **Setup**: Go to the Data Logging Edit menu
- **File Utilities**: Go to the File Utilities menu
- **Previous Menu**: Go back to previous menu

Utility key 9/10 (Data Logging 2/2)

Edit

- **Save Waveform**: Save the logs as waveform data or as image files
- **Interval**: Set the logging interval
- **Duration**: Set the duration of the record log

Previous Menu

Go back to previous menu
Utility key 10/10 (Self CAL Menu)

- Self Cal.
 - Vertical
 - Start Vertical Calibration
 - Vertical

Start Vertical Calibration
Default Settings

Here are the factory installed panel settings which appear when pressing the Save/Recall key. Default Setup.

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>Mode: Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Scale: 2V/Div</td>
</tr>
<tr>
<td></td>
<td>Coupling: DC</td>
</tr>
<tr>
<td></td>
<td>BW limit: Off</td>
</tr>
<tr>
<td>Cursor</td>
<td>Source: CH1</td>
</tr>
<tr>
<td>Display</td>
<td>Type: Vectors</td>
</tr>
<tr>
<td></td>
<td>Grid: Full</td>
</tr>
<tr>
<td>Horizontal</td>
<td>Scale: 2.5us/Div</td>
</tr>
<tr>
<td>Math</td>
<td>Type: + (Add)</td>
</tr>
<tr>
<td>Measure</td>
<td>Item: Vpp, Vavg, Frequency, Duty Cycle, Rise Time</td>
</tr>
<tr>
<td>Trigger</td>
<td>Type: Edge</td>
</tr>
</tbody>
</table>
| | Mode: Auto | Slope:
| | Coupling: DC | Rejection: Off |
| | Noise Rejection: Off |
| Utility | Hardcopy: SaveImage, InkSaver On | ProbeComp: Square wave, 1k, 50% duty cycle |
| Go-NoGo | Go-NoGo: Off | Source: CH1 |
When:
Violating: Stop

Data Logging | Data logging: Off | Source: CH1
Set up: Waveform | Interval: 2 secs
Duration: 5 mins

Built-in Help

The Help key shows the contents of the built-in help support. When you press a function key, its descriptions appear in the display.

Procedure

1. Press the Help key. The display changes to the Help mode.

2. Press a functional key to access its help contents. (example: Acquire key)

3. Use the Variable knob to scroll the Help contents up and down.
4. Press the Help key again to exit the Help mode.
MEASUREMENT

The Measurement chapter describes how to properly observe a signal using the oscilloscope’s basic functions, and how to observe a signal in a detailed manner using some of the advanced functions such as:

Automatic measurements, cursor measurements, and math operations.

Basic Measurements

This section describes the basic operations required in capturing and viewing an input signal. For more detailed operations, see the following chapters.

- Measurements → from page 60
- Configuration → from page 92

Activating a channel

To activate an input channel, press the Channel key, CH1 or CH2. The channel indicator appears at the left side of the display and the channel icon changes accordingly.

(Continued on next page)
De-activating a channel

To de-activate the channel, press the Channel key twice (once if the channel menu is already selected).

Using Autoset

The Autoset function automatically configures the panel settings to the best viewing conditions, in the following way:

- Selecting the horizontal scale
- Positioning the waveform horizontally
- Selecting the vertical scale
- Positioning the waveform vertically
- Selecting the trigger source channel
- Activating the channels

Procedure

1. Connect the input signal to the oscilloscope and press the Autoset key.

2. The waveform appears in the center of the display.
Undoing the Autoset
To undo the Autoset, press *Undo* (available for a few seconds).

Adjusting the trigger level
If the waveform is still unstable, try adjusting the trigger level up or down by using the Trigger Level knob.

Limitation
Autoset does not work in the following situation.
- Input signal frequency less than 20Hz
- Input signal amplitude less than 30mV

Running and stopping the trigger

Background
In the trigger Run mode, the oscilloscope constantly searches for a trigger condition and updates the signal onto the display when the condition is met.

In the trigger Stop mode, the oscilloscope stops triggering and thus the last acquired waveforms stay in the display. The trigger icon at the top of the display changes into Stop mode.

Pressing the Trigger Run/Stop key switches between the Run and Stop mode.
Waveform operation

Waveforms can be moved or scaled in both the Run and Stop mode. For details, see page 99 (Horizontal position/scale) and page 106 (Vertical position/scale).

Changing the horizontal position and scale

For more detailed configurations, see page 99.

Setting the horizontal position

The horizontal position knob moves the waveform left or right.

The position indicator moves along with the waveform and the distance from the center point is displayed as the offset in the upper side of the display.
Selecting the horizontal scale
To select the timebase (scale), turn the TIME/DIV knob; left (slow) or right (fast).

Range
1ns/Div ~ 10s/Div, 1-2.5-5 increment

Changing the vertical position and scale
For more detailed configuration, see page 106.

Set vertical position
To move the waveform up or down, turn the vertical position knob for each channel.

As the waveform moves, the vertical position of the cursor appears at the bottom left corner of the display.

Run/Stop mode
The waveform can be moved vertically in both Run and Stop mode.

Select vertical scale
To change the vertical scale, turn the VOLTS/DIV knob; left (down) or right (up).

Range
2mV/Div ~ 10V/Div, 1-2-5 increments
The vertical scale indicator for each channel on the bottom left of the display changes accordingly.
Using the probe compensation signal

Background

This section introduces how to use the probe compensation signal for general usage, in case the DUT signal is not available or to get a second signal for comparison. For probe compensation details, see page 145.

Note: The frequency accuracy and duty factor are not guaranteed. Therefore the signal should not be used for reference purposes.

Waveform type

- Square waveform used for probe compensation. 1k ~ 100kHz, 5% ~ 95%.
- Demonstration signal for showing the effects of peak detection. See page 92 for peak detection mode details.

View the probe compensation waveform

1. Connect the probe between the compensation signal output and Channel input.

2. Press the Utility key.
3. Press ProbeComp.

4. Press Wave type repeatedly to select the wave type.

5. (For only) To change the frequency, press Frequency and use the Variable knob.

Range 1kHz ~ 100kHz

6. (For only) To change the duty cycle, press Duty Cycle and use the Variable knob.

Range 5% ~ 95%

Probe compensation

For probe compensation details, see page 145.
Automatic Measurements

The automatic measurement function measures input signal attributes and updates them in the display. Up to 5 automatic measurement items can be updated at any one time on the side menus. All automatic measurement types can be displayed on screen if necessary.

Measurement items

<table>
<thead>
<tr>
<th>Overview</th>
<th>Voltage type</th>
<th>Time type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vpp</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Vmax</td>
<td>Period</td>
</tr>
<tr>
<td></td>
<td>Vmin</td>
<td>RiseTime</td>
</tr>
<tr>
<td></td>
<td>Vamp</td>
<td>FallTime</td>
</tr>
<tr>
<td></td>
<td>Vhi</td>
<td>+ Width</td>
</tr>
<tr>
<td></td>
<td>Vlo</td>
<td>- Width</td>
</tr>
<tr>
<td></td>
<td>Vavg</td>
<td>Dutycycle</td>
</tr>
<tr>
<td></td>
<td>Vrms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROVShoot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOVShoot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPRESShoot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPREShoot</td>
<td></td>
</tr>
</tbody>
</table>

Voltage measurement items

- **Vpp**: Difference between positive and negative peak voltage (=Vmax - Vmin)
- **Vmax**: Positive peak voltage.
- **Vmin**: Negative peak voltage.
<table>
<thead>
<tr>
<th>Vamp</th>
<th>Difference between global high and global low voltage (=Vhi − Vlo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vhi</td>
<td>Global high voltage.</td>
</tr>
<tr>
<td>Vlo</td>
<td>Global low voltage.</td>
</tr>
<tr>
<td>Vavg</td>
<td>Averaged voltage of the first cycle.</td>
</tr>
<tr>
<td>Vrms</td>
<td>RMS (root mean square) voltage.</td>
</tr>
<tr>
<td>ROVShoot</td>
<td>Rise overshoot voltage.</td>
</tr>
<tr>
<td>FOVShoot</td>
<td>Fall overshoot voltage.</td>
</tr>
<tr>
<td>RPREShoot</td>
<td>Rise preshoot voltage.</td>
</tr>
<tr>
<td>FPRESShoot</td>
<td>Fall preshoot voltage.</td>
</tr>
</tbody>
</table>

Time measurement items

<table>
<thead>
<tr>
<th>Freq</th>
<th>Frequency of the waveform.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Waveform cycle time (=1/Freq).</td>
</tr>
<tr>
<td>Risetime</td>
<td>Rising time of the pulse (~90%).</td>
</tr>
<tr>
<td>Falltime</td>
<td>Falling time of the pulse (~10%).</td>
</tr>
<tr>
<td>+Width</td>
<td>Positive pulse width.</td>
</tr>
<tr>
<td>−Width</td>
<td>Negative pulse width.</td>
</tr>
</tbody>
</table>
Duty Cycle \[\frac{\text{Ratio of signal pulse compared with whole cycle}}{100\times (\text{Pulse Width/Cycle})} \]
Automatically measuring the input signals

Viewing the measurement result

1. Press the Measure key.

2. The measurement results appear on the menu bar, constantly updated. 5 measurement slots (F1 to F5) can be customized.

Selecting a measurement item

3. Press F3 repeatedly to select the measurement type: Voltage or Time.

4. Use the Variable knob to select the measurement item.

5. Press Previous Menu to confirm the item selection and to go back to the measurement results view.
Cursor Measurements

Cursor line, horizontal or vertical, shows the precise position of the input waveforms or the math operation results. The horizontal cursor can track time, voltage and frequency, whilst the vertical cursor can track voltage.

Using the horizontal cursors

<table>
<thead>
<tr>
<th>Procedure</th>
<th>1. Press the Cursor key. The cursors appear in the display.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Press $X \leftrightarrow Y$ to select the horizontal (X_1&X_2) cursor.</td>
<td></td>
</tr>
<tr>
<td>3. Press Source repeatedly to select the source channel.</td>
<td>Range CH1, 2, MATH</td>
</tr>
<tr>
<td>4. The cursor measurement results will appear in the menu, F2 to F4.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Time position of the left cursor. (relative to zero)</td>
</tr>
<tr>
<td>X2</td>
<td>Time position of the right cursor. (relative to zero)</td>
</tr>
<tr>
<td>X_1X_2</td>
<td>The difference between the X_1 and X_2.</td>
</tr>
<tr>
<td>-uS</td>
<td>The time difference between X_1 and X_2.</td>
</tr>
<tr>
<td>-Hz</td>
<td>The time distance converted to frequency.</td>
</tr>
</tbody>
</table>
The voltage difference. \((X1-X2)\)

Moving the horizontal cursors

- To move the left cursor, press \(X1\) and then use the Variable knob.
- To move the right cursor, press \(X2\) and then use the Variable knob.
- To move both cursors at once, press \(X1X2\) and then use the Variable knob.

Remove cursors

Press Cursor to remove the onscreen cursors.

Using the vertical cursors

Procedure

1. Press the Cursor key.
2. Press \(X\leftrightarrow Y\) to select the vertical \((Y1\&Y2)\) cursor.
3. Press Source repeatedly to select the source channel.

 \[\text{Range} \quad \text{CH1, 2, MATH} \]
4. The cursor measurement results will appear in the menu.

Parameters

- \(Y1\) Voltage level of the upper cursor
- \(Y2\) Voltage level of the lower cursor
Moving the vertical cursors

<table>
<thead>
<tr>
<th>The difference between the upper and lower cursor</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Y1Y2</th>
<th>Y1</th>
<th>Y2</th>
<th>Y1Y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>123.4mV</td>
<td></td>
<td>12.9mV</td>
<td>10.5mV</td>
</tr>
</tbody>
</table>

To move the upper cursor, press Y1 and then use the Variable knob.

To move the lower cursor, press Y2 and then use the Variable knob.

To move both cursors at once, press Y1Y2 and then use the Variable knob.

Remove cursors

Press Cursor to remove the onscreen cursors.
Math Operations

The Math operations can add, subtract, or perform FFT on the input waveforms. The resulted waveform can be measured using the cursors, and saved or recalled just like normal input signals.

Overview

<table>
<thead>
<tr>
<th>Math Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition (+)</td>
<td>Adds the amplitude of CH1 & CH2 signals.</td>
</tr>
<tr>
<td>Subtraction (−)</td>
<td>Extracts the amplitude difference between CH1 & CH2.</td>
</tr>
<tr>
<td>FFT</td>
<td>Performs a FFT calculation on a signal. Four types of FFT windows are available: Hanning, Flattop, Rectangular, and Blackman.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FFT Window</th>
<th>Frequency resolution</th>
<th>Amplitude resolution</th>
<th>Suitable for...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanning FFT window</td>
<td>Good</td>
<td>Not good</td>
<td>Frequency measurement on periodic waveforms</td>
</tr>
<tr>
<td>Flattop FFT window</td>
<td>Not good</td>
<td>Good</td>
<td>Amplitude measurement on periodic waveforms</td>
</tr>
<tr>
<td>Rectangular FFT window</td>
<td>Very good</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Amplitude resolution | Bad
---|---
Suitable for.... | Single-shot phenomenon (this mode is the same as having no window at all)

Blackman FFT window	Frequency resolution	Bad
Amplitude resolution | Very good
Suitable for.... | Amplitude measurement on periodic waveforms

Adding, subtracting or multiplying signals

Procedure

1. Activate both CH1 and CH2.

2. Press the Math key.

3. Press Operation repeatedly to select addition (+) or subtraction (–).

4. The math measurement result appears in the display.
5. To move the math result vertically, use the Variable knob. The position will be displayed in Position.

6. To clear the math result from the display, press the Math key again.

Using the FFT function

Procedure

1. Press the Math key.

2. Press Operation repeatedly to select FFT.

3. Press Source repeatedly to select the source channel.

4. Press Window repeatedly to select the FFT window type.

5. The FFT result appears. The horizontal scale changes from time to frequency, and the vertical scale from voltage to dB.

6. To move the FFT waveform vertically, press Position and use the Variable knob.
Range -12.00 Div ~ +12.00 Div

7. To select the vertical scale of FFT waveform, press Unit/Div repeatedly.

 Range 1, 2, 5, 10, 20 dB/Div

8. To clear the FFT result from the display, press the Math key again.
Go No-Go Testing

Overview

Background

Go-NoGo testing checks if a waveform conforms to a user-specified maximum and minimum boundary (template). The testing can be set to stop or continue each time the template has or has not been violated by the input waveform.

Settings

<table>
<thead>
<tr>
<th>Item</th>
<th>Default</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoGo criteria: When inside or outside the boundary</td>
<td>Inside</td>
<td>Page 80</td>
</tr>
<tr>
<td>Source</td>
<td>Channel 1</td>
<td>Page 80</td>
</tr>
<tr>
<td>Test continue or stop when NoGo occurs</td>
<td>Stop</td>
<td>Page 82</td>
</tr>
<tr>
<td>Boundary (template) – selects the minimum and maximum boundaries (template) from a single waveform</td>
<td>Auto (0.4%)</td>
<td>Page 82</td>
</tr>
<tr>
<td>Run Tests</td>
<td></td>
<td>Page 87</td>
</tr>
</tbody>
</table>
Edit: NoGo When

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press No Go When repeatedly to select the NoGo conditions.

NoGo when the waveform is inside the boundary (template)

NoGo when the waveform is outside of the boundary (template)

Edit: Source

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press the Go-NoGo Menu key.
4. Press Source repeatedly to select the source channel (CH1 or CH2).
Edit: NoGo Violation Conditions

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press the Go-NoGo Menu key.

4. Press Violating repeatedly to select the NoGo conditions.

 Stop Stops the test when the NoGo conditions have been met.

 Continue The tests continue even when the NoGo conditions have been met.

Edit: Template (boundary)

Background The NoGo template sets the upper and lower amplitude boundary. Two methods are available: Min/Max and Auto.

 Min/Max Selects the upper boundary (Max) and lower boundary (Min) as separate waveforms, from the internal memory. The upper boundary is saved to Ref A, the lower boundary is saved to Ref. B.
Advantage: The template shape and distance (allowance) between the source signal are fully customizable.

Disadvantage: The waveforms (templates) have to be stored internally prior to this selection.

Auto

Creates the upper and lower boundary (template) from the source signal, not from an internally stored waveform.

Advantage: No need to store the waveforms prior to this selection.

Disadvantage: The template shape is proportional to the source signal. The distance (allowance) between the source signal and the upper and lower template is the same.

Max/Mix

1. The template is based on the source signal. Ensure the source signal appears on the display.

2. Press the Utility key.

3. Press the More key.

4. Press the Go-NoGo Menu key.

5. Press the Template Edit key.
6. Press Template repeatedly to select the upper (Max) or lower (Min) boundaries.

7. Press Source and use the Variable knob to select the waveform template.

- **Max**
 - Waveform A: Ref A, W01~W15
- **Min**
 - Waveform B: Ref B, W01~W15

8. Press Position and use the Variable knob to set the waveform amplitude.

9. Repeat steps 5-7 for the other template setting (Max or Min).

10. When both Max and Min templates have been configured, press **Save & Create** to save the templates.
Auto

1. The template is based on the source signal. Ensure the source signal appears on the display.

2. Press the Utility key.

3. Press the More key.

4. Press the Go-NoGo Menu key.

5. Press the Template Edit key.

6. Press Template repeatedly to select the Auto template.
7. Press Source and use the Variable knob to select the template source.

Source CH1, CH2

8. Press Tolerance repeatedly to choose the tolerance units, % or Div. Use the Variable knob to set the tolerance. The tolerance is for both the horizontal and vertical axis.

% 0.4% ~ 40.0%

Div 0.04 Div ~ 4.0 Div

9. When the Auto template has been configured, press Save & Create to save the template.
Run Go-NoGo Tests

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press the Go-NoGo Menu key.

Ensure the source signal and boundary templates appear on the screen.

4. Press Go-NoGo. The test starts and stops according to the conditions set on page 80, 82. To stop the test that has already started, press Go-NoGo again.

5. The test results appear in the Ratio soft-key. The numerator denotes the total number of failed tests. The denominator denotes the total number of tests.

 Numerator Number of “failed” tests.

 Denominator Total number of tests.
Data Logging

Overview

Background

The Data logging function allows you to log data or a screen image over timed intervals for up to 100 hours to a USB flash drive.

The data or images are stored to a USB flash drive in a directory named LogXXXX. LogXXXX is incremented each time the data logging function is used.

The files saved in the LogXXXX directory are named DSXXXX.CSV, or DSXXXX.BMP for data or image files, respectively. At each timed interval data or an image file is saved and the file number incremented. For example, DS0000 is the first logged data, DS0001 is the second and so on.
Edit: Source

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press the Data logging Menu key.

4. Press Source repeatedly to select the source channel (CH1 or CH2).

Edit: Setup Parameters

Background

The logging function must set the type of data that will be logged (waveform/image), the capture interval time and the duration of the data logging.

Procedure

1. Press the Utility key.

2. Press the More key.

3. Press the Data logging Menu key.
4. Press the Setup key.

5. Press Save repeatedly to log data or screen images.

6. Press Interval and use the Variable knob to select the interval time.

 Interval time
 2 secs~ 2min (duration = 5 min)
 2 secs~ 5 min (duration 5~ 30 min)
 2 secs~ 30 min (duration 30+ min)

7. Press Duration and use the Variable knob to set the duration time.

 Duration
 5 mins ~ 100 hours

8. Press Previous menu to return to the Data logging menu. Data logging is now ready to begin.
Run Data logging

Background

Ensure the data source (page 89) and data logging setup has been set (page 89).

Procedure

1. Insert a USB flash drive into the USB front panel port.

2. Press the Utility key.

3. Press the More key.

4. Press the Data logging Menu key.

5. Press Data logging to turn data logging On. Data/image files start logging to the USB flash drive automatically. To stop the Data logging, press the Data logging key again.
CONFIGURATION

The Configuration chapter describes how to configure panel settings to make measurements and observations suited to the application needs.

Acquisition

The acquisition process samples the analog input signals and converts them into digital format for internal processing. You may select the normal, average, or peak detect acquisition mode.

Selecting the acquisition mode

<table>
<thead>
<tr>
<th>Procedure</th>
<th>1. Press the Acquire key.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Select the acquisition mode between Normal, Average and Peak Detect.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>Normal</th>
<th>All of the acquired data is used to draw the waveform.</th>
</tr>
</thead>
</table>
Average

Multiple data is averaged to form a waveform. This mode is useful for drawing a noise-free waveform. To select the number, press Average repeatedly.

Average number: 2, 4, 8, 16, 32, 64, 128, 256

Peak detect

To activate the Peak detect mode, press Peak-Detect. Only the minimum and maximum value pairs for each acquisition interval (bucket) are used. This mode is useful for catching abnormal glitches in a signal.

Peak detect effect using the probe comp. waveform

1. One of the probe compensation waveforms can demonstrate the peak detection mode. Connect the probe to the probe compensation output.

2. Press the Utility key.

3. Press ProbeComp.

4. Press Wave Type and select the waveform.

5. Press the Autoset key. The oscilloscope positions the waveform in the center of the display.

6. Press the Acquire key.

8. Press Peak-Detect and see that a spike noise is captured.

Example

The peak detect mode reveals the occasional glitch.
Real time vs Equivalent time sampling mode

Backgrounds	The oscilloscope automatically switches between two sampling modes, Real-time and Equivalent-time, according to the number of active channels and sampling rate.
Real-time sampling	One sampled data is used to reconstruct a single waveform. Short-time events might get lost if the sampling rate gets too high. This mode is used when the sampling rate is relatively low (250MSa/s or lower).
Equivalent-time sampling	Multiple numbers of sampled data are accumulated to reconstruct a single waveform. Restores greater waveform details but takes longer to update the waveform. This mode is used when the sampling rate becomes higher than 250MSa/s. The maximum equivalent-time sampling rate is 25GSa/s.
Display

The Display section describes how to configure the display settings: drawing type, waveform accumulation, contrast adjustment, and grid settings.

Selecting vector or dot drawing

Procedure

1. Press the Display key.

2. Press *Type* repeatedly to select the waveform drawing.

<table>
<thead>
<tr>
<th>Types</th>
<th>Dots</th>
<th>Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only the sampled dots are displayed.</td>
<td>The sampled dots are connected by lines.</td>
</tr>
</tbody>
</table>

Accumulating the waveform

Background

Accumulation preserves the old waveform drawings and overwrites new waveforms on top of it. It is useful for observing waveform variation.

Procedure

1. Press the Display key.

2. Press *Accumulate* on the waveform accumulation.
3. To clear the accumulation and start it over (refresh), press *Refresh*.

Adjusting the display contrast

Procedure

1. Press the Display key.

2. Press *Contrast*.

 Turn the Variable knob left to lower the contrast (dark display) or right to raise the contrast (bright display).

Selecting the display grid

Procedure

1. Press the Display key.
2. Press the grid icon repeatedly to select the grid.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🕊️</td>
<td>Shows the full grid.</td>
</tr>
<tr>
<td>🕊️</td>
<td>Shows the outer frame and X/Y axis.</td>
</tr>
<tr>
<td>🕊️</td>
<td>Shows only the outer frame.</td>
</tr>
</tbody>
</table>
Horizontal View

The Horizontal view section describes how to configure the horizontal scale, position, waveform update mode, window zoom, and X-Y mode.

Moving the waveform position horizontally

Procedure

The horizontal position knob moves the waveform left or right. The position indicator at the top of the display shows the center and current position.

Center position

Moving right

Selecting the horizontal scale

Select horizontal scale

To select the timebase (scale), turn the TIME/DIV knob; left (slow) or right (fast).

Range 1ns/Div ~ 50s/Div, 1-2.5-5-10 increment

The timebase indicator at the bottom of the display updates the current horizontal scale.
Selecting the waveform update mode

<table>
<thead>
<tr>
<th>Background</th>
<th>The display update mode is switched automatically or manually according to the horizontal scale.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main mode</td>
<td>Updates the whole displayed waveform at once. The main mode is automatically selected when the horizontal scale (timebase) is fast.</td>
</tr>
<tr>
<td></td>
<td>Horizontal scale $\leq 100\text{ms/div}$</td>
</tr>
<tr>
<td></td>
<td>Trigger All modes available</td>
</tr>
<tr>
<td>Roll mode</td>
<td>Updates and moves the waveform gradually from the right side of the display to the left. The Roll mode is automatically selected when the horizontal scale (timebase).</td>
</tr>
<tr>
<td></td>
<td>When in the Roll mode, an indicator appears at the bottom of the display.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main mode</th>
<th>Roll mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Timebase | ≥50ms/div (≤5kS/s) |
| Trigger | Auto mode only |

Selecting the Roll mode manually

1. Press the Horizontal menu key.
2. Press Roll. The horizontal scale automatically becomes 50ms/div and the waveform starts scrolling from the right side of the display (If the oscilloscope is already in the Roll mode, there will be no change).
Zooming the waveform horizontally

Procedure/range

1. Press the Horizontal Menu key.

2. Press Window.

3. Use the horizontal position knob to move the zoom range sideways, and TIME/DIV knob to change the zoom range width.

 The width of the bar in the middle of the display is the actual zoomed area.

 Zoom range 1ns ~ 25s

4. Press Window Zoom. The specified range gets zoomed.
Example

Setting the zoom width

Zooming in

Zoom width
Viewing waveforms in the X-Y mode

Background
The X-Y mode compares the voltage of Channel 1 and Channel 2 waveforms in a single display. This mode is useful for observing the phase relationship between the two waveforms.

Procedure
1. Connect the signals to Channel 1 (X-axis) and Channel 2 (Y-axis).

2. Make sure both Channel 1 and 2 are activated.

3. Press the Horizontal key.

4. Press XY. The display shows two waveforms in X-Y format; Channel 1 as X-axis, Channel 2 as Y-axis.

Adjusting the X-Y mode waveform
<table>
<thead>
<tr>
<th>Horizontal position</th>
<th>CH1 Position knob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal scale</td>
<td>CH1 Volts/Div knob</td>
</tr>
<tr>
<td>Vertical position</td>
<td>CH2 Position knob</td>
</tr>
<tr>
<td>Vertical scale</td>
<td>CH2 Volts/Div knob</td>
</tr>
</tbody>
</table>
Example

Main mode

XY mode

XY mode
Vertical View (Channel)

The Vertical view section describes how to set the vertical scale, position, bandwidth limitation, coupling mode, and attenuation.

Moving the waveform position vertically

Procedure
To move the waveform up or down, turn the vertical position knob for each channel.

Selecting the vertical scale

Procedure
To change the vertical scale, turn the VOLTS/DIV knob; left (down) or right (up).

Range
2mV/Div ~ 10V/Div, 1-2-5 increments

Selecting the coupling mode

Procedure
1. Press the Channel key.
2. Press Coupling repeatedly to select the coupling mode.

Range
DC coupling mode. The whole portion (AC and DC) of the signal appears on the display.
Ground coupling mode. The display shows only the zero voltage level as a horizontal line. This mode is useful for measuring the signal amplitude with respect to the ground level.

AC coupling mode. Only the AC portion of the signal appears on the display. This mode is useful for observing AC waveforms mixed with DC components.

Inverting the waveform vertically

Procedure

1. Press the Channel key.

2. Press Invert. The waveform becomes inverted (upside down) and the Channel indicator in the display shows a down arrow.

Original Inverted
Limiting the waveform bandwidth

Background
Bandwidth limitation puts the input signal into a 20MHz (−3dB) low-pass filter. This function is useful for cutting off high frequency noise to see the clear waveform shape.

Procedure
1. Press the Channel key.
2. Press *BW Limit* to turn on or off the limitation. When turned on, the BW indicator appears next to the Channel indicator in the display.

<table>
<thead>
<tr>
<th>Example</th>
<th>BW Limit Off</th>
<th>BW Limit On</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selecting the probe attenuation level

Background
A signal probe has an attenuation switch to lower the original DUT signal level to the oscilloscope input range, if necessary. The probe attenuation selection adjusts the vertical scale so that the voltage level on the display reflects the real value, not the attenuated level.

Procedure
1. Press the Channel key.
2. Press Probe repeatedly to select the attenuation level.

3. The voltage scale in the channel indicator changes accordingly. There is no change in the waveform shape.

<table>
<thead>
<tr>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1, x10, x100</td>
</tr>
</tbody>
</table>

Note
The attenuation factor adds no influence on the real signal; it only changes the voltage scale on the display.

Trigger
The Trigger function configures the conditions by which the oscilloscope captures the incoming signals.

Trigger type

<table>
<thead>
<tr>
<th>Edge</th>
<th>Triggers when the signal crosses an amplitude threshold in either a positive or negative slope.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>Extracts a sync pulse from a video format signal and triggers on a specific line or field.</td>
</tr>
<tr>
<td>Pulse</td>
<td>Triggers when the pulse width of the signal matches the trigger settings.</td>
</tr>
</tbody>
</table>

Indicators

<table>
<thead>
<tr>
<th>Edge/Pulse</th>
<th>Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH1, Edge, Rising edge, DC coupling)</td>
<td>(CH1, Video, Positive polarity, NTSC standard)</td>
</tr>
</tbody>
</table>
Trigger parameter

<table>
<thead>
<tr>
<th>Trigger source</th>
<th>CH1, 2</th>
<th>Channel 1, 2 input signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td></td>
<td>AC mains signal</td>
</tr>
<tr>
<td>Ext</td>
<td></td>
<td>External trigger input signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trigger mode</th>
<th>Auto</th>
<th>The oscilloscope updates the input signal regardless of the trigger conditions (if there is no trigger event, the oscilloscope generates an internal trigger). Select this mode especially when viewing rolling waveforms at a slow timebase.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>The oscilloscope acquires the input signals once when a trigger event occurs, then stops acquiring. Pressing the Single key again will repeat the process.</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>The oscilloscope acquires and updates the input signals only when a trigger event occurs.</td>
</tr>
</tbody>
</table>
The Normal trigger status appears in the upper right corner of the display.

<table>
<thead>
<tr>
<th>Video standard (video trigger)</th>
<th>NTSC</th>
<th>National Television System Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PAL</td>
<td>Phase Alternative by Line</td>
</tr>
<tr>
<td></td>
<td>SECAM</td>
<td>SEquential Couleur A Mémoire</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sync polarity (video trigger)</th>
<th>Positive polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative polarity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Video line (video trigger)</th>
<th>Selects the trigger point in the video signal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>field</td>
<td>1 or 2</td>
</tr>
<tr>
<td>line</td>
<td>1263 for NTSC, 1313 for PAL/SECAM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse condition (pulse trigger)</th>
<th>Sets the pulse width (20ns ~ 10s) and the triggering condition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>Longer than</td>
</tr>
<tr>
<td>=</td>
<td>Equal to</td>
</tr>
<tr>
<td><</td>
<td>Shorter than</td>
</tr>
<tr>
<td>≠</td>
<td>Not equal to</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trigger slope</th>
<th>Triggers on the rising edge.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triggers on the falling edge.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trigger coupling (pulse trigger)</th>
<th>AC</th>
<th>Triggers only on AC component.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DC</td>
<td>Triggers on AC+DC component.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency rejection (pulse trigger)</th>
<th>LF</th>
<th>Puts a high-pass filter and rejects the frequency below 50kHz.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HF</td>
<td>Puts a low-pass filter and rejects the frequency above 50kHz.</td>
</tr>
</tbody>
</table>
Noise rejection
Rejects noise signals.

Trigger level
Using the trigger level knob moves the trigger point up or down.

Configuring the edge trigger

Procedure

1. Press the Trigger menu key.

2. Press Type repeatedly to select edge trigger.

3. Press Source repeatedly to select the trigger source.

4. Press Mode repeatedly to select the Auto or Normal trigger mode. To select the single trigger mode, press the Single key.

5. Press Slope/coupling to enter into the trigger slope and coupling selection menu.

6. Press Slope repeatedly to select the trigger slope, rising or falling edge.
7. Press **Coupling** repeatedly to select the trigger coupling, DC or AC.

 Coupling

 AC

 Range

 DC, AC

8. Press **Rejection** to select the frequency rejection mode.

 Rejection

 Off

 Range

 LF, HF, Off

9. Press **Noise Rej** to turn the noise rejection on or off.

 Noise Rej

 Off

 Range

 On, Off

10. Press **Previous** menu to go back to the previous menu.

 Previous

 Menu
Configuring the video trigger

Procedure

1. Press the Trigger menu key.

2. Press Type repeatedly to select video trigger. The video trigger indicator appears at the bottom of the display.

3. Press Source repeatedly to select the trigger source channel.

4. Press Standard repeatedly to select the video standard.

5. Press Polarity repeatedly to select the video signal polarity.

6. Press Line repeatedly to select the video field line. Use the Variable knob to select the field.
Configuring the pulse width trigger

Procedure

1. Press the Trigger menu key.

2. Press Type repeatedly to select pulse width trigger. The pulse width trigger indicator appears at the bottom of the display.

3. Press Source repeatedly to select the trigger source.

4. Press Mode repeatedly to select the trigger mode, Auto or Normal. To select the Single trigger mode, press the Single key.

5. Press When repeatedly to select the pulse condition. Then use the Variable knob to set the pulse width.

Condition >, <, =, ≠
Width 20ns ~ 10s

6. Press **Slope/Coupling** to set trigger slope and coupling.

7. Press **Slope** repeatedly to select the trigger slope, which also appears at the bottom of the display.

 - **Range**: Rising edge, falling edge

8. Press **Coupling** repeatedly to select the trigger coupling.

 - **Range**: DC, AC

9. Press **Rejection** to select the frequency rejection mode.

 - **Range**: LF, HF, Off

10. Press **Noise Rej** to turn the noise rejection on or off.

 - **Range**: On, Off

11. Press **Previous menu** to go back to the previous menu.

Manually triggering the signal
Note

This section describes how to manually trigger the input signals when the oscilloscope does not capture them. This section applies to the Normal and Single trigger mode, since in the Auto trigger mode, the oscilloscope keeps updating the input signal regardless of the trigger conditions.

<table>
<thead>
<tr>
<th>To acquire the signal regardless of the trigger conditions</th>
<th>To acquire the input signal regardless of the trigger condition, press the Force key. The oscilloscope captures the signals once.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the Single trigger mode</td>
<td>Press the Single key to start waiting for the trigger condition. To break out of the Single mode, press the Run/Stop key. The trigger mode changes to the Normal mode.</td>
</tr>
</tbody>
</table>
Rear Panel USB Port Interface

The Remote control interface section describes how to set up the USB interface for PC connection. The details of remote control commands are described in the DSO Programming Manual.

<table>
<thead>
<tr>
<th>USB connection</th>
<th>PC end</th>
<th>Type A, host</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSCILLOSCOPE</td>
<td>Type B, slave</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>1.1/2.0 (full speed)</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Connect the USB cable to the USB slave port on the OSCILLOSCOPE.

2. When the PC asks for the USB driver, select dso_cdc_1000.inf

3. On the PC, activate a terminal application such as MTTY (Multi-Threaded TTY). To check the COM port No., see the Device Manager in the PC. For Windows XP, select Control panel → System → Hardware tab.

4. Run this query command via the terminal application.
 *idn?
 This command should return the manufacturer, model number, serial number, and firmware version in the following format.
 GW, DSO model, 000000001, V1.00
5. Configuring the command interface is completed. Refer to the programming manual for the remote commands and other details.
System Settings

The system settings show the oscilloscope’s system information and allow changing the language.

Viewing the system information

Procedure

1. Press the Utility key.

2. Press System Info. The upper half of the display shows the following information.
 - Manufacturer
 - Model
 - Serial number
 - Firmware version
 - Web address

3. Press any other key to go back to the waveform display mode.

Selecting the language

Parameter	Language selection differs according to the region to which the oscilloscope is shipped.
English	
Chinese (traditional)	
Chinese (simplified)	
Japanese	
Korean	
French	
Procedure

1. Press the Utility key.

2. Press Language repeatedly to select the language.
SAVE/RECALL

The save function allows saving display images, waveform data, and panel settings into the oscilloscope’s internal memory or to the front panel USB port. The recall function allows recalling the default factory settings, waveform data, and panel settings from the oscilloscope’s internal memory or from USB.

File Structures

Three types of file are available: display image, waveform file, and panel settings.

Display image file format

<table>
<thead>
<tr>
<th>Format</th>
<th>xxxx.bmp (Windows bitmap format)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>The current display image in 234 x 320 pixels, color mode. The background color can be inverted (Ink saver function).</td>
</tr>
</tbody>
</table>

Waveform file format
<table>
<thead>
<tr>
<th>Format</th>
<th>xxxx.csv (Comma-separated values format which can be opened in spreadsheet applications such as Microsoft Excel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform type</td>
<td>CH1, 2 Input channel signal</td>
</tr>
<tr>
<td>Math</td>
<td>Math operation result (page 7575)</td>
</tr>
<tr>
<td>Storage location</td>
<td>The oscilloscope’s internal memory, which can hold 15 waveforms.</td>
</tr>
<tr>
<td>Internal memory</td>
<td>A USB flash drive (FAT or FAT32 format) can hold practically an unlimited number of waveforms.</td>
</tr>
<tr>
<td>External USB Flash drive</td>
<td>Two reference waveforms are used as a buffer to recall a waveform in the display. You have to save a waveform into internal memory or to USB, then copy the waveform into the reference waveform slot (A or B), and then recall the reference waveform into the display.</td>
</tr>
<tr>
<td>Ref A, B</td>
<td></td>
</tr>
</tbody>
</table>

Waveform data format

One division includes 25 points of horizontal and vertical data. The vertical point starts from the center line. The horizontal point starts from the leftmost waveform.

The time or amplitude represented by each data point depends on the vertical and horizontal scale. For example:

- Vertical scale: 10mV/div (4mV per point)
- Horizontal scale: 100us/div (4us per point)
Waveform file contents: other data

A waveform file also includes the following information.

- Memory length
- Source channel
- Vertical offset
- Vertical scale
- Coupling mode
- Waveform last dot address
- Date and time
- Trigger level
- Vertical position
- Time base
- Probe attenuation
- Horizontal view
- Horizontal scale
- Sampling period
- Sampling mode
Setup file format

Format
xxxx.set (proprietary format)
A setup file saves or recalls the following settings.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Acquire</th>
<th>Cursor</th>
<th>Display</th>
<th>Measure</th>
<th>Utility</th>
<th>Horizontal</th>
<th>Trigger</th>
<th>Channel (vertical)</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• mode</td>
<td>• source channel</td>
<td>• dots/vectors</td>
<td>• item</td>
<td>• hardcopy type</td>
<td>• display mode</td>
<td>• trigger type</td>
<td>• vertical scale</td>
<td>• operation type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cursor location</td>
<td>• grid type</td>
<td></td>
<td>• language</td>
<td>• position</td>
<td>• trigger mode</td>
<td>• coupling mode</td>
<td>• vertical position</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• video polarity</td>
<td>• bandpass limit</td>
<td>• source channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• pulse timing</td>
<td>• invert on/off</td>
<td>• unit/div</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• source channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• video standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• video line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• slope/coupling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• vertical position</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• invert on/off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• probe attenuation</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Using the USB file utilities

<table>
<thead>
<tr>
<th>Background</th>
<th>When a USB flash drive is inserted into the oscilloscope, file utilities (file deletion, folder creation and file/folder renaming) are available from the front panel.</th>
</tr>
</thead>
</table>
| Procedure | 1. Insert a USB flash drive into the front panel USB port.
2. Press the Save/Recall key. Select any save or recall function. For example USB Destination in the Save image function.
3. Press File Utilities. The display shows the USB flash drive contents.
4. Use the Variable knob to move the cursor. Press Select to go into the folder or go back to the previous directory level. |
| USB flash drive indicator | When a USB flash drive is inserted into the oscilloscope, an indicator appears at the right bottom corner of the display. (The USB flash drive shouldn’t be removed when a file is saved or retrieved from USB). |
Creating a new folder / renaming a file or folder

1. Move the cursor to the file or folder location and press New Folder or Rename. The file/folder name and the character map will appear on the display.

2. Use the Variable knob to move the pointer to the characters. Press Enter Character to add a character or Back Space to delete a character.

3. When editing is complete, press Save. The new/renamed file or folder will be saved.

Deleting a folder or file

1. Move the cursor to the folder or file location and press Delete. The message “Press F4 again to confirm this process” appears at the bottom of the display.

2. If the file/folder still needs to be deleted, press Delete again to complete the deletion. To cancel the deletion, press any other key.
Quick Save (HardCopy)

Background

The Hardcopy key works as a shortcut to save display images, waveform data, and panel settings onto a USB flash drive card.

The Hardcopy key can be configured into two types of operations: save image and save all (image, waveform, setup).

Using the Save/Recall key can also save files with more options. For details, see page 130.

Functionalities

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save image (.bmp)</td>
<td>Saves the current display image into a USB flash drive.</td>
</tr>
<tr>
<td>Save all</td>
<td>Saves the following items into a USB flash drive.</td>
</tr>
<tr>
<td></td>
<td>- Current display image (.bmp)</td>
</tr>
<tr>
<td></td>
<td>- Current system settings (.set)</td>
</tr>
<tr>
<td></td>
<td>- Current waveform data (.csv)</td>
</tr>
</tbody>
</table>

Procedure

1. Insert a USB flash drive into the front panel USB port.

2. Press the Utility key.

4. Press Function repeatedly to select Save Image or Save All.
5. To invert the color in the display image, press *Ink Saver*. This turns Ink Saver on or off.

6. Press the Hardcopy key. The file or folder will be saved to the root directory of the USB flash drive.
Save

This section describes how to save data using the Save/Recall menu.

File type/source/destination

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel setup</td>
<td>Panel settings</td>
<td>• Internal memory: S1 ~ S15</td>
</tr>
<tr>
<td>(xxxx.set)</td>
<td></td>
<td>• External memory: USB</td>
</tr>
<tr>
<td>Waveform data</td>
<td>Channel 1, 2</td>
<td>• Internal memory: W1 ~ W15</td>
</tr>
<tr>
<td>(xxxx.csv)</td>
<td>• Math operation result</td>
<td>• Reference waveform A, B</td>
</tr>
<tr>
<td></td>
<td>• Reference waveform A, B</td>
<td>• External memory: USB</td>
</tr>
<tr>
<td>Display image</td>
<td>Display image</td>
<td>• External memory: USB</td>
</tr>
<tr>
<td>(xxxx.bmp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save All</td>
<td>• Display image</td>
<td>• External memory: USB</td>
</tr>
<tr>
<td></td>
<td>• Waveform data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Panel settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(xxxx.bmp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(xxxx.csv)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(xxxx.set)</td>
<td></td>
</tr>
</tbody>
</table>
Saving the panel settings

Procedure

1. (For saving to USB flash drive) Insert the USB flash drive into the front panel USB port.

2. Press the Save/Recall key twice to access the Save menu.

3. Press Save Setup.

4. Press Destination repeatedly to select the saved location. Use the Variable knob to change the internal memory location (S1 ~ S15).

 Memory
 Internal memory, S1 ~ S15

 USB
 USB, no practical limitation for the amount of files. When saved, the setup file will be placed in the root directory.

5. Press Save to confirm saving. When completed, a message appears at the bottom of the display.

 Note
 The file will not be saved if the power is turned off or the USB flash drive is removed before completion.
File utilities
To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 126.

Saving the waveform

Procedure

1. (For saving to USB flash drive) Insert the USB flash drive into the front panel USB port.

2. Press the Save/Recall key twice to access the Save menu.

3. Press Save Waveform.

4. Press Source. Use the Variable knob to select the source signal.

- CH1 ~ CH2 Channel 1 ~ 2 signal
- Math Math operation result (page 75)
- RefA, B Internally stored reference waveforms A, B
5. Press Destination repeatedly to select the file destination. Use the Variable knob to select the memory location.

<table>
<thead>
<tr>
<th>Memory</th>
<th>USB</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal memory, W1 ~ W15</td>
<td>Save to the USB flash drive with a 4k waveform memory length.</td>
<td>Internal reference waveform, A/B</td>
</tr>
</tbody>
</table>

6. Press Save to confirm saving. When completed, a message appears at the bottom of the display.

Note: The file will not be saved if the power is turned off or the USB flash drive is removed from the USB port.

File utilities: To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 126.

Saving the display image

Background

Saving the display image can be used as a screen capture or it can be used as a reference waveform.

Procedure

1. Insert the USB flash drive into the front panel USB port. (Image files can only be saved to USB)
2. Press the Save/Recall key twice to access the Save menu.

3. Press Save Image.

4. Press Ink Saver repeatedly to invert the background color (on) or not (off).

Note: Destination is set as USB. This cannot be changed.

5. Press Save to confirm saving. When completed, a message appears at the bottom of the display.

Note: The file will not be saved if the power is turned off or the USB flash drive is removed before completion.

File utilities

To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 126.
Saving all (panel settings, display image, waveform)

Procedure

1. (For saving to USB flash drive) Insert the USB flash drive into the front panel USB port.

2. Press the Save/Recall key twice to access the Save menu.

3. Press Save All. The following information will be saved.

 - Setup file (Axxxx.set)
 - Two types of setups are saved: the current panel setting and the last internally saved settings (one of S1 ~ S15).

 - Display image (Axxxx.bmp)
 - The current display image in bitmap format.

 - Waveform data (Axxxx.csv)
 - Two types of waveform data are saved: the currently active channel data and the last internally saved data (one of W1 ~ W15).

4. Press Ink Saver repeatedly to invert the background color (on) or not (off) for the display image.

5. Press Destination.
USB

Save to the USB flash drive with a 4k waveform memory length.

6. Press Save to confirm saving. When completed, a message appears at the bottom of the display.

Note /

The file will not be saved if the power is turned off or the USB flash drive is removed from the USB port.

It takes approximately 1 min to save a 2M waveform to the USB drive in fast mode. Detailed mode may take over 10 times longer depending on the speed of the USB flash drive.

7. Together with the current setup/waveform/image, the last saved waveform file (one from W1 ~ W15) and setup file (one from S1 ~ S15) are also included in the folder.

File utilities

To edit the USB drive contents (create/delete/ rename files and folders), press File Utilities. For details, see page 126.
Recall

File type/source/destination

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default panel setup</td>
<td>• Factory installed setting</td>
<td>• Current front panel</td>
</tr>
<tr>
<td>Reference waveform</td>
<td>• Internal memory: A, B</td>
<td>• Current front panel</td>
</tr>
<tr>
<td>Panel setup (DSxxxx.set)</td>
<td>• Internal memory: S1 ~ S15</td>
<td>• Current front panel</td>
</tr>
<tr>
<td></td>
<td>• External memory: USB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>flash drive</td>
<td></td>
</tr>
<tr>
<td>Waveform data (DSxxxx.csv)</td>
<td>• Internal memory: W1 ~ W15</td>
<td>• Reference waveform A, B</td>
</tr>
<tr>
<td></td>
<td>• External memory: USB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>flash drive</td>
<td></td>
</tr>
</tbody>
</table>
Recalling the default panel settings

Procedure

1. Press the Save/Recall key.

2. Press Default Setup. The factory installed setting will be recalled.

Setting contents

The following is the default panel setting contents.

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>Mode: Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Coupling: DC, Invert: Off, Probe attenuation: x1</td>
</tr>
<tr>
<td></td>
<td>BW limit: Off</td>
</tr>
<tr>
<td>Cursor</td>
<td>Source: CH1, Horizontal: None</td>
</tr>
<tr>
<td>Display</td>
<td>Type: Vectors, Accumulate: Off</td>
</tr>
<tr>
<td></td>
<td>Graticule:</td>
</tr>
<tr>
<td></td>
<td>Scale: 2.5us/Div, Mode: Main Timebase</td>
</tr>
<tr>
<td>Horizontal</td>
<td>Math</td>
</tr>
<tr>
<td></td>
<td>Type: + (Add), Channel: CH1+CH2</td>
</tr>
<tr>
<td></td>
<td>Position: 0.00 Div, Unit/Div: 2V</td>
</tr>
<tr>
<td>Measure</td>
<td>Item: Vpp, Vavg, Frequency, Duty cycle, Rise Time</td>
</tr>
<tr>
<td>Trigger</td>
<td>Type: Edge, Source: Channel1</td>
</tr>
<tr>
<td></td>
<td>Mode: Auto, Slope:</td>
</tr>
<tr>
<td></td>
<td>Coupling: DC, Rejection: Off</td>
</tr>
<tr>
<td></td>
<td>Noise Rejection: Off</td>
</tr>
<tr>
<td>Utility</td>
<td>SaveImage, InkSaver Off.</td>
</tr>
</tbody>
</table>
Recalling a reference waveform to the display

Procedure

The reference waveform must be stored in advance. See page 132 for details.

1. Press the Save/Recall key.

2. Press **Display Refs**. The reference waveform display menu appears.

3. Select the reference waveform, **Ref A** or **Ref B**, and press it. The waveform appears on the display and the period and amplitude of the waveform appears in the menu.

4. To clear the waveform from the display, press **RefA/B** again.

Recalling panel settings

Procedure

1. (For recalling to USB) Insert the USB flash drive into the front panel USB port.
2. Press the Save/Recall key.

4. Press Source repeatedly to select the file source, internal or external memory. Use the Variable knob to change the memory.

 - **Memory** Internal memory, S1 ~ S15
 - **USB** USB flash drive, DSXXXX.SET. The setup file(s) must be placed in the root directory to be recognized.

5. Press Recall to confirm recalling. When completed, a message appears at the bottom of the display.

 Note The file will not be recalled if the power is turned off or the USB flash drive is removed before completion.

File utilities To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 126.

Recalling a waveform
Procedure

1. (For recalling to USB) Insert the USB flash drive into the front panel USB port.

2. Press the Save/Recall key.

3. Press *Recall Waveform*. The display shows the available source and destination options.

4. Press *Source* repeatedly to select the file source, internal memory or USB. Use the Variable knob to change the memory location (W1 ~ W15)/DSXXXX.CSV.

5. Press *Destination*. Use the Variable knob to select the memory location.

6. Press *Recall* to confirm recalling. When completed, a message appears at the bottom of the display.
The file will not be recalled if the power is turned off or the USB flash drive is removed before completion.

File utilities
To edit the USB drive contents (create/ delete/ rename files and folders), press File Utilities. For details, see page 126.
MAINTENANCE

Two types of maintenance operations are available: calibrating the vertical resolution, and compensating the probe. Run these operations when using the oscilloscope in a new environment.

Vertical Resolution Calibration

Procedure

1. Press the Utility key.

2. Press the More key twice.

3. Press Self Cal Menu.

4. Press Vertical. The message “Set CAL to CH1, then press F5” appears at the bottom of the display.

5. Connect the calibration signal between the rear panel CAL out terminal and the Channel1 input.

7. The Channel1 calibration will complete in less than 5 minutes.

8. When finished, connect the calibration signal to the Channel 2 input and repeat the procedure.

9. When the calibration is complete the display will go back to the previous state.

Probe Compensation

Procedure

1. Connect the probe between the Channel1 input and the probe compensation output (2Vp-peak, 1kHz square wave) on the front panel. Set the probe voltage attenuation to x10.

2. Press the Utility key.

3. Press ProbeComp.
4. Press *Wavetype* repeatedly to select the standard square wave.

5. Press the Autoset key. The compensation signal will appear in the display.

6. Press the Display key, then Type to select the vector waveform.

7. Turn the adjustment point on the probe until the signal edge becomes sharp.
FAQ

- The input signal does not appear in the display.
- I want to remove some contents from the display.
- The waveform does not update (frozen).
- The probe waveform is distorted.
- Autoset does not catch the signal well.
- Autoset function cannot catch signals under 30mV or 30Hz. Please use the manual operation. See page 61 for details.
- I want to clean up the cluttered panel settings.
- The accuracy does not match the specifications.

The input signal does not appear in the display.

Make sure you have activated the channel by pressing the CH key (page 60).

I want to remove some contents from the display.

To clear the math result, press the Math key again (page 75).
To clear the cursor, press the Cursor key again (page 72).
To clear the Help contents, press the Help key again (page 58).
The waveform does not update (frozen).

Press the Run/Stop key to unfreeze the waveform. See page 62 for details. For trigger setting details, see page 108.
If this does not help, press the CH key. If the signal still does not appear, press the Autoset key.

The probe waveform is distorted.

You might need to compensate the probe. For details, see page 145. Note that the frequency accuracy and duty factor are not specified for probe compensation waveforms and therefore it should not be used for other reference purposes.

Autoset does not catch the signal well.

Autoset function cannot catch signals under 30mV or 30Hz. Please use the manual operation. See page 61 for details.

I want to clean up the cluttered panel settings.

Recall the default settings by pressing the Save/Recall key→Default Setting. For default setting contents, see page 57.

The saved display image is too dark on the background.
Use the Inksaver function which reverses the background color. For details, see page 133.
The accuracy does not match the specifications.

Make sure the device is powered on for at least 30 minutes, within +20°C~+30°C. This is necessary to stabilize the unit to match the specification.

For more information, contact your local dealer.
APPENDIX

Fuse Replacement

Procedure

1. Remove the power cord and remove the fuse socket using a minus driver.

Replace the fuse in the holder.
Ratings T1A, 250V
Specifications

The specifications apply when the oscilloscope is powered on for at least 30 minutes under +20°C~+30°C.

Model-specific specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Bandwidth (–3dB)</th>
<th>DC coupling:</th>
<th>AC coupling:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5352DC</td>
<td>50MHz (~3dB)</td>
<td>DC ~ 50MHz</td>
<td>10Hz ~ 50MHz</td>
</tr>
<tr>
<td></td>
<td>Trigger Sensitivity</td>
<td>0.5div or 5mV (DC ~ 25MHz)</td>
<td>1.5div or 15mV (25MHz~50MHz)</td>
</tr>
<tr>
<td></td>
<td>External Trigger Sensitivity</td>
<td>~ 50mV (DC~25MHz)</td>
<td>~ 100mV (25MHz~50MHz)</td>
</tr>
<tr>
<td></td>
<td>Rise Time</td>
<td>< 14ns approx.</td>
<td></td>
</tr>
<tr>
<td>5372DC</td>
<td>70MHz (~3dB)</td>
<td>DC ~ 70MHz</td>
<td>10Hz ~ 70MHz</td>
</tr>
<tr>
<td></td>
<td>Trigger Sensitivity</td>
<td>0.5div or 5mV (DC ~ 25MHz)</td>
<td>1.5div or 15mV (25MHz~70MHz)</td>
</tr>
<tr>
<td></td>
<td>External Trigger Sensitivity</td>
<td>~ 50mV (DC~25MHz)</td>
<td>~ 100mV (25MHz~70MHz)</td>
</tr>
<tr>
<td></td>
<td>Rise Time</td>
<td>< 5.8ns approx.</td>
<td></td>
</tr>
<tr>
<td>53102DC</td>
<td>100MHz (~3dB)</td>
<td>DC ~ 100MHz</td>
<td>10Hz ~ 100MHz</td>
</tr>
<tr>
<td></td>
<td>Trigger Sensitivity</td>
<td>0.5div or 5mV (DC ~ 25MHz)</td>
<td>1.5div or 15mV (25MHz~100MHz)</td>
</tr>
<tr>
<td></td>
<td>External Trigger Sensitivity</td>
<td>~ 50mV (DC~25MHz)</td>
<td>~ 100mV (25MHz~100MHz)</td>
</tr>
</tbody>
</table>
Common specifications

<table>
<thead>
<tr>
<th>Vertical</th>
<th>Sensitivity</th>
<th>2mV/div~10V/Div (1-2-5 increments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>± (3% x</td>
<td>Readout</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>See model-specific specifications</td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>See model-specific specifications</td>
<td></td>
</tr>
<tr>
<td>Input Coupling</td>
<td>AC, DC, Ground</td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>1MΩ±2%, ~15pF</td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td>Normal, Invert</td>
<td></td>
</tr>
<tr>
<td>Maximum Input</td>
<td>300V (DC+AC peak), CAT II</td>
<td></td>
</tr>
<tr>
<td>Math Operation</td>
<td>+, −, FFT</td>
<td></td>
</tr>
<tr>
<td>Offset Range</td>
<td>2mV/div~50mV/div: ±0.4V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100mV/div~500mV/div: ±4V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1V/div~5V/div: ±40V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10V/div : ±300V</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>Sources</td>
<td>CH1, CH2, Line, EXT</td>
</tr>
<tr>
<td>Modes</td>
<td>Auto, Normal, Single, TV, Edge, Pulse</td>
<td></td>
</tr>
<tr>
<td>Coupling</td>
<td>AC, DC, LF rej, HF rej, Noise rej</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>See model-specific specifications</td>
<td></td>
</tr>
<tr>
<td>External trigger</td>
<td>Range</td>
<td>DC: ±15V, AC: ±2V</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>See model-specific specifications</td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>1MΩ±2%, ~15pF</td>
<td></td>
</tr>
<tr>
<td>Maximum Input</td>
<td>300V (DC+AC peak), CATII</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>Range</td>
<td>1ns/div~50s/div, 1-2.5-5 increment</td>
</tr>
<tr>
<td></td>
<td>Roll: 50ms/div – 50s/div</td>
<td></td>
</tr>
<tr>
<td>Modes</td>
<td>Main, Window, Window Zoom, Roll, X-Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>±0.01%</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Pre-Trigger</td>
<td>10 div maximum</td>
<td></td>
</tr>
<tr>
<td>Post-Trigger</td>
<td>1000 div</td>
<td></td>
</tr>
<tr>
<td>X-Y Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-Axis Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y-Axis Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Shift</td>
<td></td>
<td>±3° at 100kHz</td>
</tr>
<tr>
<td>Signal Acquisition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time</td>
<td>250M Sa/s maximum</td>
<td></td>
</tr>
<tr>
<td>Equivalent</td>
<td>25G Sa/s maximum</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td>8 bits</td>
</tr>
<tr>
<td>Record Length</td>
<td></td>
<td>4k points maximum</td>
</tr>
<tr>
<td>Acquisition</td>
<td></td>
<td>Normal, Peak Detect, Average</td>
</tr>
<tr>
<td>Peak Detection</td>
<td>10ns (500ns/div ~ 50s/div)</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2, 4, 8, 16, 32, 64, 128, 256</td>
<td></td>
</tr>
</tbody>
</table>
Cursors and Measurement

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Vpp, Vamp, Vavg, Vrms, Vhi, Vlo, Vmax, Vmin, Rise Preshoot/Overshoot, Fall Preshoot/Overshoot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Freq, Period, Rise Time, Fall Time, +Width, −Width, Duty Cycle</td>
</tr>
<tr>
<td>Cursors</td>
<td>Voltage difference (ΔV) and Time difference (ΔT) between cursors</td>
</tr>
</tbody>
</table>

Control Panel Function

<table>
<thead>
<tr>
<th>Autoset</th>
<th>Automatically adjust Vertical Volt/div, Horizontal Time/div, and Trigger level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save/Recall</td>
<td>Up to 15 sets of measurement conditions and waveforms</td>
</tr>
</tbody>
</table>

Display

<table>
<thead>
<tr>
<th>LCD</th>
<th>5.7 inch, TFT, brightness adjustable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resolution (dots) 234 (Vertical) x 320 (Horizontal)</td>
</tr>
<tr>
<td></td>
<td>Graticule 8 x 10 divisions</td>
</tr>
<tr>
<td></td>
<td>Display Contrast Adjustable</td>
</tr>
</tbody>
</table>

Interface

<table>
<thead>
<tr>
<th>USB Slave Connector</th>
<th>USB1.1 & 2.0 full speed compatible (flash disk not supported)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Host connector</td>
<td>Image (BMP) and waveform data (CSV)</td>
</tr>
</tbody>
</table>

Probe Compensation Signal

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>1kHz ~ 100kHz adjustable, 1kHz step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty cycle</td>
<td>5% ~ 95% adjustable, 5% step</td>
</tr>
<tr>
<td>Amplitude</td>
<td>2Vpp±3%</td>
</tr>
</tbody>
</table>

Power Source

<table>
<thead>
<tr>
<th>Line Voltage</th>
<th>100V240V AC, 47Hz63Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumption</td>
<td>18W, 40VA maximum</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Fuse Rating</td>
<td>1A slow, 250V</td>
</tr>
<tr>
<td>Operation</td>
<td>Ambient temperature 0 ~ 50°C</td>
</tr>
<tr>
<td>Environment</td>
<td>Relative humidity ≤ 80% @35°C</td>
</tr>
<tr>
<td>Storage</td>
<td>Ambient temperature –20 ~ 70°C</td>
</tr>
<tr>
<td>Environment</td>
<td>Relative humidity ≤ 80% @70°C</td>
</tr>
<tr>
<td>Dimensions</td>
<td>310(W) x 142(H) x 140(D) mm</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 2.5kg</td>
</tr>
</tbody>
</table>
Probe Specifications

Probe for 5352DC and 5372DC

<table>
<thead>
<tr>
<th>Applicable model & probe</th>
<th>5352DC & 5372DC GTP-070A-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position x 10</td>
<td>Attenuation Ratio</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 70MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>10MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>28~32pF approx.</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>≤600Vpk, Derating with frequency</td>
</tr>
<tr>
<td>Position x 1</td>
<td>Attenuation Ratio</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 6MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>1MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>120~220pF approx.</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>≤200Vpk, Derating with frequency</td>
</tr>
<tr>
<td>Operating Cond.</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>Safety Standard</td>
<td>EN 61010-031 CAT II</td>
</tr>
</tbody>
</table>
Probe for 53102DC

<table>
<thead>
<tr>
<th>Applicable model & probe</th>
<th>53102DC & GTP-100A-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position x 10</td>
<td>Attenuation Ratio</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 100MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>10MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>14.5~17.5pF approx.</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>≤600Vpk, Derating with frequency</td>
</tr>
<tr>
<td>Position x 1</td>
<td>Attenuation Ratio</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC ~ 6MHz</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>1MΩ when used with 1MΩ input</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>85~115pF approx.</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>≤200Vpk, Derating with frequency</td>
</tr>
<tr>
<td>Operating Cond.</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>Safety Standard</td>
<td>EN 61010-031 CAT II</td>
</tr>
</tbody>
</table>
Dimensions

Digital Storage Oscilloscope
GDS-1042-U
SEFRAM
32, rue Edouard MARTEL
F42009 – SAINT-ETIENNE Cedex 2

Phone: + 33 4 77 59 01 01
Fax: +33 4 77 57 23 23
Web: www.sefram.fr
E-mail: sales@sefram.fr