Instruction Manual

Manual de Instrucciones

Model 390A Test Bench® Handheld Digital Multimeter
Modelo 390A Prueba Digital Multi-Contador Mano-Agarradera
MAINTENANCE

WARNING
Remove test leads before changing battery or fuse or performing any servicing.

BATTERY REPLACEMENT
A low battery is indicated when the symbol in the upper right hand corner is on. The low battery indication first appears when the battery is about 90% depleted. The meter may be operated a few more hours but the battery should be replaced soon thereafter.
1. Remove two screws from back of unit securing the tilt stand.
2. Remove tilt stand.
3. Remove two screws securing case back, then carefully lift back off to gain access to battery. Remove and save the battery insulator.
4. Replace the dead battery with a fresh 9V battery. Replace the battery insulator. Use alkaline batteries for longer life.
   To prolong battery life set the Function/Range switch to the OFF position when not making measurements.
5. Reinstall back cover, tilt stand.

FUSE REPLACEMENT
If no current measurements are possible, check for a blown overload protection fuse. Two fuses are used; F1 for the mA input and F2 for the 20 A input. A quick check for a blown 20 A fuse can be performed by inserting the test lead into the 20 A jack and setting the function switch to any other position except 20 A or OFF. If no warning tone is heard the fuse is probably blown. This procedure can also be used for the mA jack fuse by inserting the test lead into the mA jack and setting the function switch to any position other than OFF or one of the mA positions. Replace F1 only with the original type 0.5 A, 500 V, fast blow ceramic fuse (B+K Precision Part No. 194-045-9-001). Replace F2 only with the original type 20 A, 600 V, fast acting ceramic fuse (B+K Precision Part No. 194-043-9-001).

TEST LEADS
Use only safety type leads, like those supplied. Periodically examine the test leads to ensure that the conductors are not intermittent or broken. Also make sure that good contact pressure exists at the test receptacles and fuseholder, and keep these areas free from dirt and corrosion.
SAFETY

WARNING

An electrical shock causing 10 milliamps of current to pass through the heart will stop most human heartbeats. Voltage as low as 35 volts dc or ac rms should be considered dangerous and hazardous since it can produce a fatal current under certain conditions. Higher voltages are even more dangerous. Observe the following precautions.

1. Do not exceed the following input ratings. Personal injury or damage to the instrument may result.

| DC VOLS  | 1000 V (dc or peak ac) |
| AC VOLS  | 1000 V (dc or peak ac) |
| OHMS     | 500 V (dc or peak ac)  |
| mA       | 500 mA (fuse protected) |
| 20 A     | 20 A (fuse protected)  |
| COM      | Do not float more than 500 volts from earth ground |

2. Remove test leads before replacing batteries or fuses, and before performing any servicing on the multimeter.

3. Use only the safety type test leads supplied with the multimeter.

4. Turn off equipment while making test connections in high voltage circuits. Discharge high-voltage capacitors after removing power.

5. For voltage or current measurements in high voltage equipment, do not touch equipment, meter or test leads while power is applied.

6. If possible, familiarize yourself with the equipment being tested and the location of its high voltage points. However, remember that high voltage may appear at unexpected points in defective equipment.

7. Use an insulated floor material or floor mat to stand on, and an insulated workbench surface; make certain such surfaces are not damp or wet.

8. Keep "one hand in the pocket" while handling an instrument probe. Be particularly careful to avoid contacting a nearby metal object that could provide a good ground return path.

9. When using a probe, touch only the insulated portion. Never touch the exposed tip portion.

10. Some equipment with a two-wire ac power cord, including some with polarized power plugs, is the "hot chassis" type. This includes most recent television receivers and audio equipment. A plastic or wooden cabinet insulates the chassis to protect the customer. When the cabinet is removed for servicing, a serious shock hazard exists if the chassis is touched. Not only does this present a dangerous shock hazard, but damage to test instruments or the equipment under test may result. To make measurements in "hot chassis" equipment, always connect an isolation transformer between the ac outlet and the equipment under test. The B-K Precision Model TR-110 or 1604 Isolation Transformer, or Model 1653 or 1655 AC Power Supply is suitable for most applications. To be on the safe side, treat all two-wire ac powered equipment as "hot chassis" unless you are sure it has an isolated chassis or an earth ground chassis.

11. When testing ac powered equipment, remember that ac line voltage is usually present on some power input circuits such as on-off switch, fuses, power transformer, etc. Any time the equipment is connected to an ac outlet, even if the equipment is turned off.

12. Never work alone. Someone should be nearby to render aid if necessary. Training in CPR (cardiopulmonary resuscitation) first aid is highly recommended.
MAINTENANCE

WARNING

Remove test leads before changing battery or fuse or performing any servicing.

BATTERY REPLACEMENT

A low battery is indicated when the symbol in the upper right hand corner is on. The low battery indication first appears when the battery is about 90% depleted. The meter may be operated a few more hours but the battery should be replaced soon thereafter.

1. Remove two screws from back of unit securing the tilt stand.
2. Remove tilt stand.
3. Remove two screws securing case back, then carefully lift back off to gain access to battery. Remove and save the battery insulator.
4. Replace the dead battery with a fresh 9V battery. Replace the battery insulator. Use alkaline batteries for longer life. To prolong battery life set the Function/Range switch to the OFF position when not making measurements.
5. Reinstall back cover, tilt stand.

FUSE REPLACEMENT

If no current measurements are possible, check for a blown overload protection fuse. Two fuses are used; F1 for the mA input and F2 for the 20 A input. A quick check for a blown 20 A fuse can be performed by inserting the into the 20 A jack and setting the function switch to any position except 20 A or OFF. If no warning tone is heard the fuse is probably blown. This procedure can also be used for the mA jack fuse by inserting the test lead into the mA jack and setting the function switch to any position other than OFF or one of the mA positions. Replace F1 only with the original type 0.5 A, 500 V, fast blow ceramic fuse (B+K Precision Part No. 194-045-9-001). Replace F2 only with the original type 20 A, 600 V, fast acting ceramic fuse (B+K Precision Part No. 194-043-6-001).

TEST LEADS

Use only safety type leads, like those supplied. Periodically examine the test leads to ensure that the conductors are not intermittent or broken. Also make sure that good contact pressure exists at the test receptacles and fuseholder, and keep these areas free from dirt and corrosion.

SPECIFICATIONS

Specifications apply from +18°C to +28°C at relative humidity up to 75% unless otherwise noted.

DC VOLTAGE Auto/Manual ranging.

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy (50 Hz to 500 Hz)</th>
<th>Over voltage Protection</th>
<th>Input Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 mV</td>
<td>100 μV</td>
<td>±(0.1 % rdg + 2 digits)</td>
<td>1000 VDC or peak AC</td>
<td>10 MΩ</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
<td>9.1 MΩ</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC VOLTAGE Auto/Manual ranging. Average sensing, RMS Indicating.

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy (50 Hz to 500 Hz)</th>
<th>Accuracy (500 Hz to 1 kHz)</th>
<th>Overvoltage Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 mV</td>
<td>100 μV</td>
<td>±(1.2 % rdg + 5 digits)*</td>
<td>Unspecified</td>
<td></td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>±(1.0 % rdg + 3 digits)</td>
<td>≤(1.5 % rdg + 5 digits)</td>
<td>1000 VDC or peak AC</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>±(1.0 % rdg + 3 digits)</td>
<td>≤(1.5 % rdg + 5 digits)</td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 V</td>
<td>1 V</td>
<td>±(1.2 % rdg + 5 digits)*</td>
<td>≤(1.5 % rdg + 5 digits)</td>
<td></td>
</tr>
</tbody>
</table>

Input Impedance: Same as DCV/less than 100 pF

* Freq. response for 400 mV range is 50 - 100 Hz
**DC CURRENT Auto/Manual ranging.**

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Burden Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 μA</td>
<td>0.1 μA</td>
<td>±(1.0 % rdg + 1 digit)</td>
<td>500 mV max.</td>
</tr>
<tr>
<td>4 mA</td>
<td>1 μA</td>
<td>±(1.0 % rdg + 1 digit)</td>
<td>500 mV max.</td>
</tr>
<tr>
<td>40 mA</td>
<td>10 μA</td>
<td>±(1.0 % rdg + 1 digit)</td>
<td>500 mV max.</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 μA</td>
<td>±(1.0 % rdg + 1 digit)</td>
<td>500 mV max.</td>
</tr>
<tr>
<td>* 20 A</td>
<td>10 mA</td>
<td>±(2.0 % rdg + 3 digits)</td>
<td>500 mV max.</td>
</tr>
</tbody>
</table>

Overload Protection: 0.5 A (500 V) fast blow ceramic fuse on mA input
20 A (600 V) fast blow ceramic fuse on 20 A input.

* 20 A Range Maximum Current: 10 A continuous, 20 A for 30 sec. max.

---

**RESISTANCE Auto/Manual ranging.**

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Burden Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Ω</td>
<td>0.1 Ω</td>
<td>±(0.5 % rdg + 4 digits)</td>
<td>-1.2 VDC</td>
</tr>
<tr>
<td>4 kΩ</td>
<td>1 Ω</td>
<td>±(0.4 % rdg + 2 digits)</td>
<td>-0.45 VDC</td>
</tr>
<tr>
<td>40 kΩ</td>
<td>10 Ω</td>
<td>±(0.4 % rdg + 2 digits)</td>
<td>-0.45 VDC</td>
</tr>
<tr>
<td>400 kΩ</td>
<td>100 Ω</td>
<td>±(1.5 % rdg + 4 digits)</td>
<td>500 V DC or peak AC</td>
</tr>
</tbody>
</table>

Overload Protection: 0.5 A (500 V) fast blow ceramic fuse on mA input

---

**FREQUENCY COUNTER Auto ranging.**

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 kHz</td>
<td>1 Hz</td>
<td>±(0.1 % rdg + 3 digits)</td>
<td>&gt; 1.0 V rms</td>
</tr>
<tr>
<td>40 kHz</td>
<td>10 Hz</td>
<td>±(0.1 % rdg + 3 digits)</td>
<td>&gt; 2.0 V rms, &lt; 5 V rms</td>
</tr>
</tbody>
</table>

Minimum Phase Width: >25 ns
Duty Cycle Limits: >30% and <70%
Overload Protection: 500 V DC or peak AC

---

**TEMPERATURE Auto/Manual Ranging.**

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50°C to 400°C</td>
<td>0.1°C</td>
<td>±(0.8 % rdg + 2°C)</td>
</tr>
<tr>
<td>400°C to 1300°C</td>
<td>1°C</td>
<td>±(1.0 % rdg + 2°C)</td>
</tr>
<tr>
<td>-58°F to 400°F</td>
<td>0.1°F</td>
<td>±(0.8 % rdg + 4°F)</td>
</tr>
<tr>
<td>400°F to 2372°F</td>
<td>1°F</td>
<td>±(1.0 % rdg + 4°F)</td>
</tr>
</tbody>
</table>

Overload Protection: 60 VDC or 24 VAC rms
### DIODE CHECK

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Max Test Current</th>
<th>Max Open Circuit Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 V</td>
<td>1 mV</td>
<td>± (1.5 % rdg + 3 dgt)</td>
<td>1.2 mA</td>
<td>3.0 V DC</td>
</tr>
</tbody>
</table>

Audible indication: < 0.2 V

Overload Protection ................. 500 V DC or peak AC

### CONTINUITY TEST

<table>
<thead>
<tr>
<th>Range</th>
<th>Response Time</th>
<th>Description</th>
<th>Max Open Circuit Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Ω</td>
<td>Approx 100 ms</td>
<td>buzzer sounds below approx. 40 Ω</td>
<td>-1.2 V DC</td>
</tr>
</tbody>
</table>

Overload Protection ...................... 500 V DC or peak AC

### CAPACITANCE Auto/Manual Ranging

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 nF</td>
<td>1 pF</td>
<td>± (3.0 % rdg + 20 dgt)</td>
</tr>
<tr>
<td>40 nF</td>
<td>10 pF</td>
<td></td>
</tr>
<tr>
<td>400 nF</td>
<td>100 pF</td>
<td></td>
</tr>
<tr>
<td>4 µF</td>
<td>1 nF</td>
<td></td>
</tr>
<tr>
<td>40 µF</td>
<td>10 nF</td>
<td></td>
</tr>
<tr>
<td>400 µF</td>
<td>0.1 µF</td>
<td></td>
</tr>
<tr>
<td>4 mF</td>
<td>1 µF</td>
<td>± (5.0 % rdg + 10 dgt)</td>
</tr>
<tr>
<td>40 mF</td>
<td>10 µF</td>
<td></td>
</tr>
</tbody>
</table>

Overload Protection ...................... 500 V DC or peak AC

* Accuracy using relative mode to zero meter.

### GENERAL SPECIFICATIONS

Display: 3-3/4 digit liquid crystal display (LCD) with a maximum reading of 3999.

Analog Bar Graph: 42 segments with measurements 20 times per second.


Overrange Indication: OFL or -OL is displayed.

Low Battery Indication: ☢ displayed.

Sampling rate: 2 measurements per second, nominal, 1 time per second for capacitance and frequency measurements.

Temperature.

- Full Operation ..................... 0 to +50°C <70% R.H.
- Storage ............................ -20°C to 60°C at <80% R.H.

Power: 9V (NEDA 1604).

Battery life: 500 hours typical (alkaline).

Auto Power Off: Meter automatically shuts down after approx. 30 minutes of inactivity.

Dimensions (H × W × D): 7.8" × 3.6" × 1.7" (198 × 90 × 44 mm).

Weight: 14.1 oz. (400 g) including battery.

Supplied Accessories: Test leads (pair), battery, instruction manual.
Warranty and Service Information

B&K Precision Corp. warrants to the original purchaser that its product and the component parts thereof, will be free from defects in workmanship and materials for a period of three years from the date of purchase.

B&K Precision Corp. will, without charge, repair or replace, at its option, defective product or component parts. Returned product must be accompanied by proof of the purchase date in the form of a sales receipt.

To obtain warranty coverage in the U.S.A., this product must be registered by completing and mailing the enclosed warranty card to B&K Precision Corp., 1031 Segovia Circle, Placentia, CA 92870 within fifteen (15) days from proof of purchase.

Exclusions: This warranty does not apply in the event of misuse or abuse of the product or as a result of unauthorized alterations or repairs. It is void if the serial number is altered, defaced or removed.

B&K Precision Corp. shall not be liable for any consequential damages, including without limitation damages resulting from loss of use. Some states do not allow limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific rights and you may have other rights, which vary from state to state.

Model Number:_________  Date Purchased:_________

Warranty Service: Please return the product in the original packaging with proof of purchase to the below address. Clearly state in writing the performance problem and return any leads, connectors and accessories that you are using with the device.

Non-Warranty Service: Return the product in the original packaging to the below address. Clearly state in writing the performance problem and return any leads, connectors and accessories that you are using with the device. Customers not on open account must include payment in the form of a money order or credit card. For the most current repair charges contact the factory before shipping the product.

Return all merchandise to B&K Precision Corp., with pre-paid shipping. The flat-rate repair charge includes return shipping to locations in North America. For overnight shipments and non-North America shipping fees contact B&K Precision Corp.

B&K Precision Corp.
1031 Segovia Circle
Placentia, CA 92870
Phone: 714-237-9220
Facsimile: 714-237-9214
Email: service@bkprecision.com

Include with the instrument your complete return shipping address, contact name, phone number and description of problem.

SYMBOLS

⚠️ See instruction manual for further precautionary information.

⚠️ High voltage terminal; up to 1000 volts may be present if connected to high voltage.

COM Common input terminal.

→ Diode test.

☐ Double insulation.

1000V MAX 750V MAX

Maximum input rating or V-Ω-Hz terminal with respect to earth ground.

● Continuity test.

V ACV.

V DCV.

A ACA.

A DCA.

OPTIONAL ACCESSORIES

Shielded Temperature Probe for Imersion and

General Purpose Model TP-1A

Shielded Temperature Probe for Air and Gas Model TP-2A

Replacement Test Leads Model TL-1

Deluxe Test Leads Model TL-2A

Accessory Tips for Deluxe Test Leads Model TL-3

High Voltage Probe (40 k VDC) Model PR-25A
CONTROLS AND INDICATORS

1. **Display**. 3-3/4 digit (3999 maximum) with automatic decimal point analog bar graph, low battery and full annunciators for function and unit of measurement.

2. **RANGE Switch**. Select manual ranging mode or changes ranges.

3. **RS232 Switch**. Press the button to show "RS232" annunciator on LCD and to start sending data to computer being connected.

4. **REL Δ Switch**. Sets present reading as the zero reference.

5. **PEAK Switch**. Record the peak+ or peak- value.

6. **Function/Range Switch**. Selects function for autoranging modes and function and range for manual ranging modes: \(\sim V, mV, \Omega, \bullet \) (continuity), \(\bullet \) (diode test), Hz, Cm, mA, mA, 20 A, °C, °F.

7. **Type K Receptacle**. Input for type k thermocouple probe.

8. **20 A Jack**, Input for up to 20 A dc or ac current range. For measurements greater than 3 A high current test leads are recommended.

9. **mA Jack**. Input for dc or ac current up to 400 mA, Cx.

10. **COM Jack**. Input for common or reference test lead for all measurements. Connect to earth ground or reference point not more than 500 V MAX (dc + ac peak) from earth ground.

11. **\(\bullet \) VQHz**. Input for dc and ac voltage, resistance, frequency, continuity or diode test.

12. **Shift Switch**. Shift DCA/ACA, \(\Omega/\bullet \) / \(\bullet \) function.

13. **MIN/MAX Switch**. Activates maximum and minimum record feature.

14. **Hz Switch**. ACV/DCV or ACA/DCA measurement, push Hz switch to read frequency on display.

15. **Hold Switch**. Activates data hold feature.
RANGE SELECTION
1. Autoranging mode is automatically selected when unit is turned on.
2. To change ranges manually, momentarily depress RANGE button. "MANU" annunciator on display indicates that the meter is in the manual ranging mode. Press again to advance to next higher range.
3. To return to autoranging mode, depress and hold RANGE button for one second or longer.
4. If quantity to be measured is unknown start with highest range, or use autoranging mode.
5. When an overrange is indicated (OL, or OL and a beep signal) switch to the next highest range.

[CAUTION]
Do not switch between ranges while connected to a high voltage.

AUTO POWER OFF
1. The meter will automatically shut off if the Function/Range switch position is not changed within 30 minutes.
2. The auto power off mode is activated with an "APO" symbol indicating on LCD.
3. After auto power off, press any button on DMM (except HOLD button), or change range position of the rotary knob to turn the DMM back on again.
4. Disable auto power off, set the DMM to off position, press any button (except the HOLD button) on DMM, and hold the button while turning the rotary knob to the desired range position. Release the button when LCD displays normally.

NOTE ON ANALOG BARGRAPH
The analog bargraph feature is activated for measurements of voltage, current, resistance, frequency, and capacitance. Its update speed of 20 measurements/second is 10 times that of the digital display. This makes it suitable for measuring coarse adjustments of these parameters, or indicating the direction of change of a varying quantity.

VOLTAGE MEASUREMENTS
1. To measure dc voltage, set function switch to Vm.
2. To measure ac voltage, set function switch to V~.
3. Connect red test lead to \(\Rightarrow V\ \Omega\ Hz\) jack and the black test lead to COM jack.
4. Connect test leads to points of measurements.
5. For dc, a (−) sign is displayed for negative polarity; (+) positive polarity is implied.

RESISTANCE MEASUREMENTS
1. Set the function switch to \(\Omega\).
2. Remove power from equipment under test.
3. Connect red test lead to \(\Rightarrow V\ \Omega\ Hz\) jack and the black test lead to the COM jack. Red lead is (−) polarity.
4. Connect test leads to the points of measurements.

CONTINUITY MEASUREMENTS
1. Set the function switch to \(\bullet\) position.
2. Perform "Resistance Measurements" procedure, steps 2 thru 4. Buzzer sounds when resistance is less than about 40Ω.

FREQUENCY MEASUREMENTS
1. Set the Function/Range switch to Hz for frequency measurements.
2. Connect the red test lead to the \(\Rightarrow V\ \Omega\ Hz\) jack and the black test lead to the COM jack.
3. Connect the test leads to the point of measurement and read the frequency from the display.

DIODE TEST
1. Set the function switch to \(\bullet\) position.
2. Connect red test lead to the \(\Rightarrow V\ \Omega\ Hz\) jack and black test lead to COM jack. Red lead is (+) polarity.
3. To check forward voltage (VF), connect the red test lead to anode and black test lead to the cathode of the diode. Diodes and semiconductor junctions with normal VT of less than approximately 3.0 V can be checked.
4. Display indicates the forward voltage. Normal diode voltages are approximately 0.4 V for germanium diodes, 0.7 V for silicon diodes, and 1.6 V for light emitting diodes (LED). An open diode reads approximately 3 V. A shorted diode reads near 0 V.
5. Reverse test lead connections to diode. Reading should be the same as with open test leads (approximately 3 V). Lower readings indicate a leaky diode.
OPERATING INSTRUCTIONS

CAPACITANCE MEASUREMENTS

[CAUTION]

Never apply an external voltage when in the Cx position. Damage to the meter may result. Always short capacitor leads together before connecting to meter.

1. Set the Function/Range switch to Cx (capacitance).
2. Connect the COM and the Cx (+) mA mA leads to the capacitor. Observe polarity when measuring polarized capacitors.
3. Read the capacitance directly from the display. A shorted capacitor will indicate an overrange. An open capacitor will indicate near zero on all ranges.
4. For maximum accuracy, stop to the desired range in manual ranging, then press the REL button to zero out test lead capacitance before the measurement.

USEFUL CONVERSIONS

<table>
<thead>
<tr>
<th>pF</th>
<th>nF</th>
<th>µF</th>
<th>mF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>1.0</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>10,000</td>
<td>10.0</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>100,000</td>
<td>100.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1,000</td>
<td>1.0</td>
<td>0.001</td>
</tr>
<tr>
<td>10,000,000</td>
<td>10,000</td>
<td>10.0</td>
<td>0.01</td>
</tr>
<tr>
<td>100,000,000</td>
<td>100,000</td>
<td>100.0</td>
<td>0.1</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>1,000,000</td>
<td>1,000</td>
<td>1.0</td>
</tr>
</tbody>
</table>

pF = picofarads (10^-12), nF = nanofarads (10^-9), µF = microfarads (10^-6), mF = millifarads (10^-3).

5. The bar graph is disabled in capacitance measurement mode.
6. In 4nF and 40mF ranges, the bar graph on LCD will be in action back and forth. This is a changing mode during, not a indication of the measured reading.
7. When the capacitor to be tested is connected, it “dis” symbol indicates on LCD, it means there is voltage existing the tested capacitor and need to be discharged before testing.

CURRENT MEASUREMENTS

[WARNING]

For current measurements, the meter must be connected in series with the load. If incorrectly connected in parallel with the load, the meter presents a very low impedance (almost a short), which may blow the fuse or damage the equipment under test.

NOTE

A warning tone will be heard if the test lead is connected to mA input jack while the knob is not set to mA range. A warning tone will also be heard if the test lead is connected to 20 A input jack while the knob is not set to 20 A range.

1. To measure dc current, set the function switch to the desired A = range.
2. To measure ac current, set the function switch to the desired A ~ range.
3. For current measurements under 400 mA, connect the red test lead to the mA jack and the black test lead to the COM jack.
4. For current measurements above 400 mA, connect the red test lead to the 20 A jack and the black test lead to the COM jack (set the Function/Range switch to the 20 A position).
5. For current measurements greater than 3 A, high current test leads are recommended.
6. Apply power and read the value from the display.

MAX/MIN HOLD MODE

1. MAX/MIN mode will store and display the maximum or minimum values measured by the meter.
2. Select the desired function (MAX/MIN is not operational in “Hz” function).
3. Connect the meter to the point to be measured.
4. To observe the minimum value recorded, momentarily depress the MAX/MIN button. The “MIN” annunciator will be displayed along with the minimum recorded reading. The meter will record and hold any new minimum that occurs during the measurement.
5. To observe the maximum value recorded, momentarily depress the MAX/MIN button again. The “MAX” annunciator will be displayed along with the maximum recorded reading. The meter will record and hold any new maximum that occurs during the measurement.
DATA HOLD
Data hold can be used when making voltage, current, or frequency measurements. When switched to the ON position the display will freeze. The test leads can then be disconnected without affecting the data display.

PEAK + HOLD
Record the peak+ or peak- value in a measurement. It is usable with AC/DC voltage, AC/DC current measurements. If the pressed time >2 sec, the PEAK function will enter to calibration mode, the LCD will show "CAL" and the internal buffer will remember the internal OP off set voltage then back to the measure mode. Response time: More than 1 ms.

Hz Button Sensitivity
Minimum input range: More than 400 digits. The accuracy is same as frequency mode, the measuring frequency is from 40Hz up to 1kHz.

RELATIVE
When the REL button is pressed the present reading become the zero reading and all subsequent readings are displayed relative to this value. This function is cleared by pressing the REL button >1 sec which returns the meter to normal operation.

RS232 Operating
1. Connect the Model 390A to the PC using the serial cable provided.
2. At the Model 390A, rotate the function selector switch to the range.
3. Press the RS232 button to activate the serial port output.
4. At the PC, open the Model 390A software by double-clicking on the icon the 390A directory or file folder. (Disk 1 and Disk 2).
5. Operating system: Ms windows versions WIN95 or WIN98.
6. Operations of RS232 software Please refer to operations of each function described in the software.

FIGURAS
- 3⅓ digit LCD exhibited with function of anunciadores
- Barrográfico Analógico.
- Exactitud básica DCV ±0.1%.
- Resolución de 100μV, 0.1μA, 0.1Ω, 1pF, 1Hz.
- Autocolocado.
- Potencia de Auto Apagado prolonga vida de batería.
- Cinco alcances de voltaje de: 400mV a 1000V.
- Cinco alcances de voltaje ac: 400mV a 750V.
- Cuatro alcances de corriente de: 400μA a 20A.
- Cuatro alcances de corriente ac: 400μA a 20A.
- Seis alcances de resistencia: 400Ω a 40MΩ.
- Cinco alcances de capacidad: 4nF a 40mF.
- Cinco alcances de frecuencia: 4kHz a 40MHz.
- Medidas de temperatura: °F, °C.
- Función de prueba de diodo: medidas de gota de voltaje delantero.
- Probador de continuidad audible.
- Zumbador de advertencia audible si sonda insertada dentro a gato equivocado.
- Función de dato esperado congela valor en exhibición.
- Registrador de estudio Max/Min.
- Registro el valor punto: el punto + o punto – valor.
- Modo relativo de medidas.
- Polaridad auto, cero auto.
- Indicación de Sobre-alcance en todos alcances.
- Alcance mA fumílido.
- Alcance 20A fundido.
- Conductores de prueba tipo seguro.
- Estuche de choque resistencia en pistola opone gota de 10-pie.