INSTRUCTION MANUAL

TOOL KIT
3-1/2 DIGIT MULTIMETER
MODEL 2704A

Full Multimeter Functions
Capacitance Meter
Transistor Tester
Diode Tester
Continuity Tester

© 1992 • Maxtec International Corp.
480-695-9-001 Printed in U.S.A.
WARRANTY INFORMATION

LIMITED ONE YEAR WARRANTY

MAXTEC INTERNATIONAL CORPORATION warrants to the original purchaser that its B + K Precision product, and the component parts thereof, will be free from defects in workmanship and materials for a period of one year from the date of purchase.

MAXTEC will, without charge, repair or replace, at its option, defective product or component parts upon delivery to an authorized B + K Precision service contractor or the factory service department, accompanied by proof of the purchase date in the form of a sales receipt.

Exclusions: This warranty does not apply in the event of misuse or abuse of the product or as a result of unauthorized alterations or repairs. It is void if the serial number is altered, defaced or removed.

MAXTEC shall not be liable for any consequential damages, including without limitation damages resulting from loss of use. Some states do not allow limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific rights and you may also have other rights which vary from state to state.

For your convenience we suggest you contact your B + K Precision distributor, who may be authorized to make repairs or can refer you to the nearest service contractor. If warranty service cannot be obtained locally, please send the unit to B + K Precision Service Department, 6470 West Cortland Street, Chicago, Illinois, 60635, properly packaged to avoid damage in shipment.

B + K Precision Test Instruments warrants products sold only in the U.S.A. and its overseas territories. In other countries, each distributor warrants the B + K Precision products which it sells.

FEATURES

- Basic accuracy: DCV ± 0.5%.
- Resolution: 100 μV, 0.1Ω, 0.1 μA, 1pF.
- Single function and range control.
- Five dc voltage ranges: 200 mV to 1000 V.
- Five ac voltage ranges: 200 mV to 750 V.
- Five capacitance ranges: 2000 pF to 20 μF.
- Five dc current ranges: 200 μA to 200 mA and 10 A.
- Five ac current ranges: 200 μA to 200 mA, and 10 A.
- Six resistance ranges: 200Ω to 20 MΩ.
- hFE transistor test function: Measures dc gain (dc β or hFE) of PNP and NPN transistors.
- Diode test function: measures forward voltage drop.
- Audible continuity buzzer.
- 3-1/2 digit LCD display.
- Easy to read high contrast display with large 0.7" digits.
- Auto polarity, auto zero.
- Overrange indication on all ranges.
- Overload protection.
- Tilt stand.
- Non-skid feet.
- Rugged case withstands 4-foot drop.
SPECIFICATIONS

Accuracy specifications apply from -10° to +20°C at relative humidity up to 75% unless otherwise noted.

DC VOLTS Manual ranging

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Overvoltage Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mV</td>
<td>100 µV</td>
<td>± (0.6% rdg + 1 dig)</td>
<td>200 V (dc +ac peak) AC 350 V (rms, sine)</td>
</tr>
<tr>
<td>2 V</td>
<td>1 mV</td>
<td>± (1.0% rdg + 4 dig)</td>
<td>1200 V (dc +ac peak) AC 800 V (rms, sine)</td>
</tr>
<tr>
<td>20 V</td>
<td>10 mV</td>
<td>± (1.5% rdg + 4 dig)</td>
<td>50 Hz-500 Hz</td>
</tr>
<tr>
<td>200 V</td>
<td>100 mV</td>
<td>± (1.5% rdg + 4 dig)</td>
<td>50 Hz-500 Hz</td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (2.0% rdg + 4 dig)</td>
<td>50 Hz-500 Hz</td>
</tr>
</tbody>
</table>

Input impedance: 10 MΩ

AC VOLTS manual ranging, average responding, rms reading

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Overvoltage Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mV</td>
<td>100 µV</td>
<td>± (1.0% rdg + 4 dig)</td>
<td>200 V (dc +ac peak) AC 350 V (rms, sine)</td>
</tr>
<tr>
<td>2 V</td>
<td>1 mV</td>
<td>± (1.0% rdg + 1 dig)</td>
<td>1200 V (dc +ac peak) AC 800 V (rms, sine)</td>
</tr>
<tr>
<td>20 V</td>
<td>10 mV</td>
<td>± (1.0% rdg + 4 dig)</td>
<td>50 Hz-500 Hz</td>
</tr>
<tr>
<td>200 V</td>
<td>100 mV</td>
<td>± (1.5% rdg + 4 dig)</td>
<td>50 Hz-500 Hz</td>
</tr>
<tr>
<td>750 V</td>
<td>1 V</td>
<td>± (2.0% rdg + 4 dig)</td>
<td>50 Hz-500 Hz</td>
</tr>
</tbody>
</table>

Input impedance: 10 MΩ

DC CURRENT Manual ranging

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Burden Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 µA</td>
<td>0.1 µA</td>
<td>± (1.0% rdg + 1 dig)</td>
<td>325 mV max</td>
</tr>
<tr>
<td>2 mA</td>
<td>1 µA</td>
<td>± (1.0% rdg + 1 dig)</td>
<td>325 mV max</td>
</tr>
<tr>
<td>20 mA</td>
<td>10 µA</td>
<td>± (2.0% rdg + 3 dig)</td>
<td>750 mV max</td>
</tr>
<tr>
<td>200 mA</td>
<td>100 µA</td>
<td>± (3.0% rdg + 3 dig)</td>
<td>750 mV max</td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td>± (2.0% rdg + 3 dig)</td>
<td>750 mV max</td>
</tr>
</tbody>
</table>

Overload protection 0.8A, 250V fuse. 10A Not listed.

OPTIONAL ACCESSORIES

- Clamp-on AC current probe: Model CP-1
- High voltage probe (40 kVDC): Model PR-28
- High voltage probe (6 kVDC): Model HV-6
- High current test leads: Model FP-10
- Replacement test leads: Model FP-30
- Semiconductor Temperature Adapter: Model TP-28
- Thermocouple Temperature Adapter: Model TP-30

SYMBOLS

- [Symbol] Do not exceed maximum ratings listed with this symbol.
- [Symbol] High voltage terminal: up to 1000 volts may be present if connected to high voltage.
- [Symbol] Common input terminal.
- [Symbol] Diode test.
- [Symbol] Continuity buzzer.
- [Symbol] Connect to earth ground or point not more than 500 volts from earth ground.
- [Symbol] Maximum input rating of voltage terminal with respect to COM input terminal. (For voltage measurement functions only.)
- [Symbol] Maximum input rating of mA terminal with respect to COM input terminal.
- [Symbol] Maximum input rating of 10A terminal with respect to COM input terminal.

ANNUNCIATORS

- [Symbol] Negative polarity.
- [Symbol] Low battery indicator.
- [Symbol] Input range indicator.
CONTROLS AND INDICATORS

1. **Display.** 3-1/2 digit display (1999 maximum) with automatic decimal point and +/- sign. Indicates measured value. Overrange indicated by displaying most significant digit “1” and all other digits blank. Also indicates low battery symbol.

2. **DC-AC Switch.** Selects dc or ac voltage and current ranges. When switch is set to AC position, all voltage and current ranges are for AC measurements. When switch is set to DC position, all voltage and current ranges are for DC measurements.

3. **Function/Range Switch.** Selects function and range, V (200 mV, 2 V, 20 V, 200 V, or 1000 VDC/750 VAC), C (2000 μF, 20 mF, 200 μF, 2 μF, or 20 μF), A (200 mA, 2 mA, 20 mA, 200 mA, or 10 A), hFE (PNP or PNP). (→→→) (diode test or continuity buzzer), or Ω (200 Ω, 2 KΩ, 20 KΩ, 200 KΩ, 2 MΩ, 20 MΩ).

4. **hFE Socket.** Input jacks for transistor test, E, B, and C identify emitter, base, and collector pins.

5. **10 A Jack.** Input for 10 A dc or ac current range. For measurements greater than 3 A, high current test leads are recommended.

6. **mA Jack.** Input for dc or ac current up to 200 mA.

7. **COM Jack.** Input for common or reference test lead for all measurements except hFE and Cx. Connect to earth ground or reference point not more than 50 V MAX (dc + ac peak) from earth ground.

8. **VΩ Jack.** Input for dc and ac voltage, resistance, continuity, and diode test.

9. **Cx Socket (Capacitor Test Socket).** Allows for measurement of small axial lead or PC-lead capacitors.

10. **Tilt Stand (not shown, on rear).**

OPERATING INSTRUCTIONS

RANGE SELECTION

1. If quantity to be measured is unknown start with the highest range.
2. When an overrange is indicated (most significant digit “1” on and all other digits blank) switch to the next highest range.

CAUTION
Do not switch between ranges while connected to high voltage.

VOLTAGE MEASUREMENTS

1. To measure dc voltage, set function switch to the desired V range and set the DC-AC switch to DC.
2. To measure ac voltage, set function switch to the desired V range and set the DC-AC switch to AC.
3. Connect red test lead to VΩ jack and black test lead to COM jack.
4. Connect test leads to points of measurement.
5. For dc, a (-) sign is displayed for negative polarity; (+) polarity is implied.

RESISTANCE MEASUREMENTS

1. Set function switch to the desired resistance range.
2. Remove power from equipment under test.
3. Connect red test lead to VΩ jack and black test lead to COM jack. Red lead is (+) polarity.
4. Connect test leads to points of measurements.

CONTINUITY MEASUREMENTS

1. Set function switch to (→→→) position.
3. Buzzer sounds when resistance is less than approximately 10Ω.

DIODE TEST

1. Set function switch to (→→→) position.
2. Connect red test lead to VΩ jack and black test lead to COM jack. RED lead is (+) polarity.
3. To check forward voltage (VF), connect red test lead to anode and black test lead to cathode of diode. Voltages and semiconductor junctions with normal Vf of less than approximately 2.0 V can be checked.
4. Display indicates forward voltage. Normal diode voltages are approximately 0.4 V for germanium diodes, 0.7 V for silicon diodes, and 1.6 V for light emitting diodes (LED). An overrange indicates an open diode. A shorted diode reads near 0 V.
5. Reverse test leads connection to diode. Reading should be same as with open test leads (an overrange indication). Lower reading indicates leaky diode.

TRANSISTOR MEASUREMENTS

CAUTION
Never apply an external voltage to the Cx or hFE sockets. Damage to the meter may result.

1. Plug transistor directly into hFE socket on meter. Sockets are labeled E, B, and C for emitter, base, and collector.
2. Set function switch to NPN or PNP position which corresponds with transistor under test.
3. Read transistor hFE (dc gain) from display.
SAFETY

WARNING

An electrical shock causing 1C milliamps of current to pass through the heart will stop most human heartbeats. Voltage as low as 35 volts d.c. or ac rms should be considered dangerous and hazardous since it can produce a fatal current under certain conditions. Higher voltages are even more dangerous. Observe the following safety precautions.

1. Do not exceed the following input ratings. Personal injury or damage to the instrument may result.

 DC VOLTS
 1000 V (dc + ac peak)
 500 V (dc + ac peak) for 200 mV range

 AC VOLTS
 750 V rms
 500 V (dc + ac peak) for 200 mV range

 OHMS
 500 VDC or AC rms
 mA
 250mA (fuse protected)
 10 A
 10 A (no fuse protection)

 COM
 Do not float more than 500 volts

2. This meter is not recommended for high voltage industrial use, for example, not for measurements of 440 VAC or 660 VAC industrial power mains. The unit is intended for use with low energy circuits to 750 VAC or 1000 VDC or high energy circuits to 250 VDC or AC. Accidental misuse by connection across a high voltage, high energy power source when the meter is set up for mA measurements may be very hazardous.

3. Remove test leads before replacing batteries or fuses, and before performing any servicing on the multimeter.

4. Turn off equipment while making test connections in high-voltage circuits. Discharge high-voltage capacitors after removing power.

5. For voltage or current measurements in high voltage equipment, do not touch equipment, meter, or test leads while power is applied.

6. Never apply an external voltage to the Cx or hFE sockets of the multimeter.

7. If possible, familiarize yourself with the equipment being tested and the location of its high voltage points. However, remember that high voltage may appear at unexpected points in defective equipment.

8. Use an insulating floor material or floor mat to stand on, and an insulated work bench surface; make certain such surfaces are not damp or wet.

9. Keep "one hand in the pocket" while handling an instrument probe. Be particularly careful to avoid contacting a nearby metal object that could provide a good ground return path.

10. When using a probe, touch only the insulated portion. Never touch the exposed tip portion.

11. Some equipment with a two-wire ac power cord, including some with polarized power plugs, is the "hot chassis" type. This includes most recent television receivers and audio equipment. A plastic or wooden cabinet insulates the chassis to protect the customer. When the cabinet is removed for servicing, a serious shock hazard exists if the chassis is touched. Not only does this present a dangerous shock hazard, but damage to test instruments or the equipment under test may result. To make measurements with "hot chassis" equipment, always connect an isolation transformer between the ac outlet and the equipment under test. The B & K Precision Model TR-100 or TR-1004 isolation transformer, or Model 1653 or 1655 AC Power Supply is suitable for most applications. To be on the safe side, treat all two wire ac powered equipment as "hot chassis" unless you are sure it has an isolated chassis or an earth ground chassis.

12. When testing ac powered equipment, remember that ac line voltage is usually present on some power input circuits such as on-off switch, fuses, power transformers, etc. any time the equipment is connected to an ac outlet, even if the equipment is turned off.

13. Never work alone. Someone should be nearby to render aid if necessary. Training in C.P.R. (cardiopulmonary resuscitation) first aid is highly recommended.

CURRENT MEASUREMENTS

WARNING

For current measurements, the meter must be connected in series with the load. If incorrectly connected in parallel with the load, the meter presents a very low impedance (almost a short), which may blow the fuse or damage the equipment under test. The 10 A range has no fuse protection and may severely damage the meter or equipment under test or cause personal injury.

1. To measure dc current, set the function switch to the desired A range and DC-A switch to DC.

2. To measure ac current, set the function switch to the desired A range and the DC/AC switch to AC.

3. For current measurements under 200 mA, connect the red test lead to the mA jack and the black test lead to the COM jack.

4. For current measurements above 200 mA, connect the red test lead to the 10 A jack and the black test lead to the COM jack (test the Function/Range switch to the 20 mA/10 A position).

5. Remove power from the circuit under test and open the normal circuit path where the measurement is to be taken. Connect the meter in series with the circuit.

6. Apply power and read the value from the display.

CAPACITANCE MEASUREMENTS

CAUTION

Never apply an external voltage to the Cx or hFE sockets. Damage to the meter may result. Always short capacitor leads together before connecting to meter.

1. Set function switch to desired Cx range.

2. Insert the capacitor leads directly into the Cx capacitor test socket.

3. Read capacitance directly from the display.

MAINTENANCE

WARNING

Remove test leads before changing batteries or fuse or performing any servicing.

BATTERY REPLACEMENT

The Battery Symbol indicates first appears when the battery is about 90% depleted. The meter may be operated a few more hours but the battery should be replaced soon thereafter. Fully license the two screws that secure the rear case and remove the rear case. The battery is located in the bottom portion of the case. Replace with a fresh 9 volt "transistor" battery. Use alkaline batteries for longer life. To prolong battery life, set POWER switch to OFF when not making measurements.

FUSE REPLACEMENT

If no current measurements are possible, check for blown overload protection fuse F1. This fuse is located adjacent to the battery on the circuit board. Remove the rear case for access. Replace only with orginal type 5 x 20 mm, 0.8 A, 250V fuse.

A fusible resistor is also connected in series with the fuse for added protection against accidental connections to high voltage, high energy sources (power mains). The fusible resistor is located inside the meter near the input terminals. Under normal operation, the fusible resistor should not require replacement for the life of the instrument. Always check fuse F1 first.

TEST LEADS

Periodically examine the test leads to ensure that the conductors are not intermittent or broken. Also make sure that good contact pressure exists at the test lead receptacles and fuseholder, and keep these areas free from dirt, oil and corrosion.