Instruction Manual

Model 2650 3.3GHz/Model 2658 8.5GHz Spectrum Analyzer

Before Starting to Use the Unit

- When you use the unit, please observe the following notes listed on the rear of the body.

\triangle WARNING

NO OPERATOR SERVICEABLE PARTS INSIDE . REFER SERVICING TO QUALIFIED PERSONNEL . PRIOR TO USE, BE FAMILIAR WITH SAFETY INSTRUCTIONS IN THE MANUAL.

\triangle CAUTION

FOR CONTINUED FIRE PROTECT, REPLACE ONLY WITH SPECIFIED TYPE'S AND RATED FUSE .

- For you to use it safely

1) When abnormal sounds, abnormal smell and smoke are emitting from the unit, remove the battery and AC adapter and stop the use.
2) Never use with hands that are wet, because doing so may cause damage to the unit and/or cause electric shock to the user.
3) Never use it under the lightning. There is a possibility of receiving a lightning bolt.
4) Never use an AC adapter other than the one specified, because doing so may cause damage to the unit. For static electricity protection, ground the unit by connecting the three cores if possible. Not grounding the unit can damage it and the object measured.
5) Never use a battery other than the one specified, because doing so may cause damage to the unit. When removing or installing the battery, be sure to do it after you turn off the unit and disconnect the AC adapter.
6) When replacing the fuse, disconnect the AC adapter, open the battery cover on the back and remove battery, and then take sufficient care to perform the replacement. Use $5 \mathrm{~A} / 250 \mathrm{~V}$ fuse (IEC127-2 sheet 3 , slow-blow type).

Never use a fuse not specified because doing so may cause damage to the unit.

- Guarantee of quality

Guarantee period

Guarantees that the unit will be repaired for any failure free of charge if the failure occurs because of our responsibility within one year after original owners date of purchase. However, the above guarantee does not apply to such a failure that:

1) is caused by a fire, natural disasters, etc.
2) is caused by inappropriate handling of the unit, such as dropping it while moving it after purchasing.
3) is caused by handling counter to the instructions or precautions listed in the operating manual.
4) is caused by modifying the unit or by being considered to be your responsibility because of inappropriate use.

We will not be responsible for direct or indirect damage caused by use of this product or by a failure of this product.

Warm-up time

In order to stabilize the electric performance at the time of turning on the unit, please perform warming-up for at least 10 minutes.

Precautions for storage

1) Strictly observe the storage conditions specified for this unit, such as avoiding direct sunlight and dust.
2) Store this unit in a place where $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, less than $60^{\circ} \mathrm{C} / 70 \% \mathrm{RH}$, variations in temperature and humidity are small.

After service

If you have any question about the contents of this product or how to operate it, please contact us at:
B\&K Precision Corporation
22820 Savi Ranch Parkway - Yorba Linda, CA 92887

TEL. 714-921-9095
URL: http://www.bkprecision.com

FAX. 714-921-6422
E-mail: sales@bkprecision.com

Contents

1. Outlines 1
1.1 Product outlines 2
1.2 Standard accessories 2
1.3 Optical accessories 2
2. Specifications 3
2.12650 performances 3
2.22658 performances 7
2.3 Outline 10
3. Description of Panel 11
4. Description of Screen 14
5. Function Key Menu 15
5.1 List of the function key menus 15
5.2 Menu tree 16
6. Preparing for Operation 21
6.1 Stand 21
6.2 Connection to power supply 21
6.3 Replacing the fuse 22
6.4 Installing the battery 22
6.5 Soft carrying case 22
7. Center Frequency <FREQ> 23
7.1 Setting with the step keys 23
7.2 Setting with the encoder 23
7.3 Setting with the numeric keys 23
7.4 According to the marker position 24
8. Frequency Span 24
9. Reference Level <REFER> 25
9.1 Setting the reference level 26
9.2 Switching units of amplitude axis 26
9.3 Reference level setting range for each unit 26
9.4 Relation between the reference level and ATT•AMP 27
9.5 Setting the offset level 27
9.6 Setting the input impedance correction 28
10. Display Scale <SCALE> 28
10.1 Setting with the keys 28
10.2 Setting with the encoder 28
11. Resolution Bandwidth <RBW> 29
11.1 MANUAL mode 29
11.2 AUTO mode 29
11.3 ALL AUTO mode 29
12. Video Bandwidth <VBW> 29
12.1 MANUAL mode 30
12.2 AUTO mode 30
12.3 ALLAUTO mode 30
13. Sweep Axis • Detection mode <SWEEP> 30
13.1 MANUAL mode 30
13.2 AUTO mode 30
13.3 ALLAUTO mode 31
13.4 Setting the detection mode 31
14. AUTO Tuning <AUTO TUNE> 31
15. Hold/Run <HOLD/RUN> 31
16. Calculation Function <CALC> 31
16.1 NORM mode 32
16.2 MAX HOLD mode 32
16.3 MIN HOLD mode 32
16.4 AVERAGE mode 32
16.5 OVER WRITE mode 33
16.6 SPURIOUS FREE mode 33
17. Marker • Peak Search <MKR> 34
17.1 Moving the marker 34
17.2 Setting the peak search <PEAK SEARCH? 35
17.3 Changing the unit of marker point 35
18. Save/Load <SAVE/LOAD> 36
18.1 Saving the data 36
18.2 Loading the data 36
18.3 Clearing the data 37
18.4 Clearing the loaded trace 37
18.5 Presetting (Initialization) 37
19. Measuring Function <MEAS> 38
19.1 Channel power measurement <Ch Power> 39
19.2 Adjacent channel leakage power measurement <Adj Ch Pw> 40
19.3 Occupied frequency bandwidth measurement 〈Occ Bw>. 41
19.4 Electric field strength measurement <E/F ANT> 42
19.5 Magnetic field strength measurement <M/F PROBE $>$.(optional) 47
20. Screen Control <DSPL> 49
20.1 Adjusting the contrast 49
20.2 Switching ON and OFF the LCD backlight 49
20.3 Adjusting the brightness of.the LCD.backlight. 49
20.4 Inverting the display 49
20.5 Enabling or disabling the beep 49
21. Printing <PRINT> (optional) 50
21.1 Hard copy of the screen 50
22. Data Output <RS232C> 51
22.1 Selecting the trace to transfer 51
22.2 Selecting the communication speed (baud rate) 51
22.3 Transfer the data 51
23. RS-232C Interface 53
23.1 RS-232C specifications. 53
23.2 How to connect 53
23.3 Command description 53
23.4 Input the frequency 59
23.5 Writing of original compensation. data. 59
23.6 Sample Programs 61
24. PC Software Model AK 2650 (optional) 61
25. Basis Performance Test (2650 only). 63
25.1 Frequency characteristics 63
25.2 Accuracy of reference level 64
25.3 The display accuracy of the center frequency 64
25.4 The display accuracy of the frequency.span 65
25.5 Linearity of the amplitude axis

1. Outlines

1.1 Product outlines

2650/2658

2650/2658 is an authentic spectrum analyzer providing performance and functions that are comparable to those of large-size bench type equipment, in a compact, lightweight and inexpensive model.

1) Compact and lightweight, $1.8 \mathrm{~kg}(2650 / 2658)$

The external dimensions are as small as $(\mathrm{W} \times \mathrm{H} \times \mathrm{D}) 6.4 \times 2.8 \times 10.2^{\prime \prime}(162 \times 70 \times 260 \mathrm{~mm})$, and the weight is only 3.7 lb . (1.8 kg) including the battery. It is very convenient for outdoor use and while on business trips.
2) Measuring frequency bandwidth 50 kHz to $3.3 \mathrm{GHz}(2650) / 50 \mathrm{kHz}$ to $8.5 \mathrm{GHz}(2658)$ This bandwidth covers those of W-CDMA, CDMA, PDC, PHS, GSM, 2.4 GHz band wireless LAN, Bluetooth, etc.

3) Operation with battery for $\mathbf{1 2 0}$ minutes

When battery BP 2650 is new \& fully charged, 2650/2658 works for about 120 minutes (with the back light turned off). It is extremely convenient for outdoor use and for use in the survey of wireless LAN installation environment.
4) Performance that is comparable to that of large-size bench type equipment 2650/2658 guarantees a highly stable frequency axis by PLL synthesizer system. The center frequency setup resolution is 100 kHz . Furthermore, the mean noise level is -110 dBm or less. Thus, a broad dynamic range is secured and the reference level can be set in 1 dB steps.

5) Abundant functions

- Measuring functions… Channel power measurement, Adjacent channel leakage power measurement, Occupied frequency bandwidth measurement, Electric field strength measurement, Magnetic field strength measurement (optional).
* Electric field strength measurement: Optimum for measurement of cellular phone and wireless LAN working environment.
* Magnetic field strength measurement: Optimum for EMI design of printed circuit boards and for evaluation of signal quality.
- Calculation functions... MAX HOLD, MIN HOLD, AVERAGE, OVER WRITE
- Marker \& peak search
- Save/load

6) Auto tuning

The center frequency is set at the spectrum of the maximum level in the $3.3 \mathrm{GHz}(2650) / 8.5 \mathrm{GHz}(2658)$ band, and in addition, optimum reference level, resolution bandwidth, video bandwidth and sweep time are set when the AUTO TUNE key is pressed. This function is very convenient for measurement of an unknown signal.

7) Auto range motion

The resolution bandwidth, video bandwidth and sweep time are set automatically based on the set frequency span. It is also possible to set auto range motion only one out of resolution bandwidth, video bandwidth and sweep time.

8) Hard copy of the image

Connect a printer PT 2650 (optional) and press the [PRINT] key on 2650/2658. The image on the screen is printed as it is.

9) High resolution display on the PC screen

The trace is displayed at high resolution, 1001 points in the horizontal axis, on the PC screen when "PC
Software AK 2650" (optional) is used.

1.2 Standard accessories

1. AC adaptor BC 2650
2. Soft carrying case LC 2650
3. Accessory pouch
4. Fuse (It has been installed in the inside)
5. Operating manual
6. Ni-MH Battery BP 2650 (Refer to " 6.4 Installing the battery" for details.)

1.3 Optional accessories

1. Antenna AN 301, AN 302, AN 303, AN 304, AN 305,AN 306
(Refer to "19.4 Electric field strength measurement" for details.)
2. Magnetic field probe PR 26 M with a dedicated double shielded coaxial cable
(Refer to "19.5 Magnetic field strength measurement" for details.)
3. PC software AK 2650 (Refer to " 24 . PC Software" for details.)
4. Printer PT 2650 with AC adaptor. 4pcs of AA batteries, a roll paper (Refer to " 21 . Printing" for details.)
5. Roll paper PX 2650 for optional printer PT 2650(with 10 rolls)
6. SMA coaxial cables

Model	Connector	Cable length	Frequency range
CC 301	SMA(P)/SMA(P)	$1.6 \mathrm{ft}(0.5 \mathrm{~m})$	DC to 10 GHz
CC 302	SMA(P)/SMA(P)	$3.28 \mathrm{ft}(1.0 \mathrm{~m})$	DC to 10 GHz
CC 303	SMA(P)/SMA(P)	$4.92 \mathrm{ft}(1.5 \mathrm{~m})$	DC to 10 GHz
CC 304	SMA(P)/N(J)	6.5 inch $(0.2 \mathrm{~m})$	DC to 4 GHz
CC 305	SMA(P)/N(P)	6.5 inch $(0.2 \mathrm{~m})$	DC to 4 GHz
CC 306	SMA(P)/BNC(J)	6.5 inch $(0.2 \mathrm{~m})$	DC to 2 GHz
CC 307	SMA(P)/BNC(P)	6.5 inch $(0.2 \mathrm{~m})$	DC to 2 GHz

* All impedance is 50Ω.
* Performances change by bending and deteriorate by repeating the insertion and extraction.

2. Specifications

2.1 Performances

- Frequency section

Frequency range
Center frequency
Setting resolution

Accuracy

50 kHz to 3.3 GHz

100 kHz
Allows Rotary encoder, numeric key and function key
within $\pm(30+20 \mathrm{~T}) \mathrm{kHz} \pm 1$ dot T : Sweep time(s)
(frequency span: 200 kHz to $10 \mathrm{MHz}, \mathrm{RBW}: 30 \mathrm{kHz}, 23 \pm 5^{\circ} \mathrm{C}$)
within $\pm(100+700 \mathrm{~T}) \mathrm{kHz} \pm 1$ dot $\quad \mathrm{T}:$ Sweep time(s)
(frequency span: 20 MHz to $3.3 \mathrm{GHz}, \mathrm{RBW}: 100 \mathrm{kHz}, 23 \pm 5^{\circ} \mathrm{C}$)
within $\pm 6 \%$ of RBW (RBW: $3 \mathrm{kHz}, 30 \mathrm{kHz}$)
within $\pm 30 \%$ of RBW (RBW: 100 kHz to 3 MHz)
Frequency span
Setting range Accuracy

Display resolution

Display dot number

Resolution bandwidth
Setting range
Accuracy
Selectivity
Video bandwidth
SSB phase noise
Spurious response
Harmonics

0 Hz (zero span), 200 kHz to $2 \mathrm{GHz}(1-2-5$ step) and 3.3 GHz (full span)
within $\pm 3 \% \pm 20 \mathrm{TkHz} \pm 1$ dot (frequency span: 200 kHz to $10 \mathrm{MHz}, 23 \pm 5^{\circ} \mathrm{C}$)
within $\pm 3 \% \pm 200 \mathrm{TkHz} \pm 1$ dot (frequency span: 20 MHz to $3.3 \mathrm{GHz}, 23 \pm 5^{\circ} \mathrm{C}$)
T: Sweep time(s)
Frequency span/250
Frequency span/1000 (only the measurement by RS-232C communication)
251dots, 1001dots (only the measurement by RS-232C communication)
(The unit displays data in 251 horizontal dots, but it internally captures the trace in 1001 dots)

3 dB bandwidth
3 kHz to $3 \mathrm{MHz}(1-3$ step $)$ and AUTO
within $\pm 20 \%$
1:12 (typical, 3dB : 60dB)
100 Hz to $1 \mathrm{MHz}(1-3$ step $)$, and AUTO
$-90 \mathrm{dBc} / \mathrm{Hz}$ (typical, 100kHz offset, RBW: 3kHz, VBW: 100Hz, Sweep time: 0.3s)
less than -60 dBc
less than $-40 \mathrm{dBc}(100 \mathrm{MHz}$ to 3.3 GHz)

- Amplitude section

Reference level

Setting range
Accuracy
+10 to -60 dBm (1dB step)
within $\pm 0.8 \mathrm{~dB} \pm 1$ dot
(center frequency: $100 \mathrm{MHz}, \mathrm{RBW}: 3 \mathrm{MHz}, \mathrm{VBW}: 1 \mathrm{MHz}$, ATT: $0 \mathrm{~dB}, 23 \pm 5^{\circ} \mathrm{C}$)

Unit
$\mathrm{dBm}, \mathrm{dBV}, \mathrm{dBmV}, \mathrm{dB} \mu \mathrm{V}, \mathrm{dB} \mu \mathrm{V} / \mathrm{m}, \mathrm{dB} \mu \mathrm{A} / \mathrm{m}$
$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ and $\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$ is used the measuring function)

Average noise level	$-110 \mathrm{dBm}($ typical, center frequency: $100 \mathrm{MHz}, \mathrm{RBW}: 3 \mathrm{kHz}, \mathrm{VBW}: 100 \mathrm{~Hz})$
Frequency Characteristic	within $\pm 2.0 \mathrm{~dB} \pm 1 \mathrm{dot}(100 \mathrm{kHz}$ to 100 MHz$)$
	within $\pm 1.0 \mathrm{~dB} \pm 1 \mathrm{dot}(100 \mathrm{MHz}$ to 3.3 GHz$)$
Input impedance	50Ω
Input VSWR	less than 2.0
Input attenuator	
\quad Operating range	0 to $25 \mathrm{~dB}(1 \mathrm{~dB}$ step), coupled with reference level
\quad Switching error	within $\pm 0.6 \mathrm{~dB}$
RBW switching error	within $\pm 0.6 \mathrm{~dB}$
Display dot number	200 dots
Display scale	
Scale	$10 \mathrm{~dB} / \mathrm{div}, 2 \mathrm{~dB} / \mathrm{div}$
Accuracy	within $\pm 0.8 \mathrm{~dB} / 10 \mathrm{~dB} \pm 1$ dot
	within $\pm 0.2 \mathrm{~dB} / 2 \mathrm{~dB} \pm 1 \mathrm{dot}$
Input damage level	within $\pm 1.6 \mathrm{~dB} / 70 \mathrm{~dB} \pm 1 \mathrm{dot}$

- Sweep section

Sweep time

Setting range	10 ms to $30 \mathrm{~s}(1-3$ step, frequency span: 0 to 2 GHz) and AUTO
	30 ms to $30 \mathrm{~s}(1-3$ step, frequency span: full span) and AUTO
Accuracy	within $\pm 0.1 \% \pm 1 \operatorname{dot}$ (frequency span: 0 to 2 GHz)
	within $\pm 1.5 \% \pm 1 \operatorname{dot}$ (frequency span: full span)
Trigger mode	AUTO(frequency span: zero span)
Detection mode	Positive peak, Negative peak, Sample

(When sweep time is 10 ms or 30 ms , only Sample can be set)

- Functions

Marker

Peak search

NORM: displays frequency (7digits max) and level (4digits max) at marker point.
DELTA: displays differential frequency and level between 2 markers.
NORM: searches a peak point within 10div. Available NEXT peak (10max).
ZONE: searches a peak point within a zone designated by center and width.
Marker moves to a peak point each sweep.

Calculation	NORM, MAX HOLD, MIN HOLD, AVERAGE, OVER WRITE MAX/MIN HOLD: 2 to 1024 times, AVERAGE: 2 to 256
Measuring	Channel power, Adjacent channel leakage power, Occupied frequency bandwidth, Electric field strength (needs antenna), Magnetic field strength (needs optional magnetic field probe) measurement.
AUTO tuning	When pushing AUTO TUNE key, the maximum level spectrum within 3.3 GHz bandwidth is adjusted to center, and reference level, RBW, VBW and sweep time are adjusted to optimum values.
Save/Load	
Save	Saves 100 traces and 100 setups
Load	Loads 1 trace and 1 setup
- General	
Immunity of radiated interference	
Level display at $10 \mathrm{~V} / \mathrm{m}$	Less than -35 dBc (reference level: 10 dBm)
Immunity to cabled interference	
Level display at transient interference of 4.0 kV	Less than -30 dBc (reference level: 10 dBm)
Input connector	SMA(J)
Communication	
Interface	RS-232C
Baud rate	2400 to 38400bps
Hard copy	Allows direct hard copy with an optional printer.
Display	
Display	LCD
Backlight	CFL backlight
Resolution	$240(\mathrm{~V}) \times 320$ (H) dots
Power source	
Battery	Ni-MH battery (optional)
External DC source	DC jack, +4.75 to +5.25 VDC/4A

- Other	
Operating temperature Operating humidity	0 to $40^{\circ} \mathrm{C}\left(\right.$ Guaranteed at $23 \pm 10^{\circ} \mathrm{C}$, without soft carrying case) less than $40^{\circ} \mathrm{C} / 80 \% \mathrm{RH}$
	$\quad\left(\right.$ Guaranteed at less than $33^{\circ} \mathrm{C} / 70 \% \mathrm{RH}$, without soft carrying case)
Storage temperature	-20 to $60^{\circ} \mathrm{C}$, less than $60^{\circ} \mathrm{C} / 70 \% \mathrm{RH}$
Dimensions	$162(\mathrm{~W}) \times 70(\mathrm{H}) \times 260(\mathrm{D}) \mathrm{mm}$ (exclude projections and stand)
Weight	approx. 1.8 kg (include battery), approx. 1.5 kg (without battery)

Specification and information is subject to change without notice. Please visit www.bkprecision.com for the most current product information

2658

2.2 Performances

Frequency range	50 kHz to 8.5 GHz
Center frequency	
Setting resolution	100 kHz
Accuracy	Allows Rotary encoder, numeric key and function key $\begin{aligned} & \text { within } \pm(30+20 \mathrm{~T}) \mathrm{kHz} \pm 1 \text { dot } \quad \text { : Sweep time(s) } \\ & \quad \text { (frequency span: } 200 \mathrm{kHz} \text { to } 10 \mathrm{MHz} \text {, RBW: } 30 \mathrm{kHz}, 23 \pm 5^{\circ} \mathrm{C} \text {) } \end{aligned}$
	within $\pm(60+300 \mathrm{~T}) \mathrm{kHz} \pm 1$ dot T: Sweep time(s) (frequency span: 20 MHz to 8.5 GHz , RBW: $100 \mathrm{kHz}, 23 \pm 5^{\circ} \mathrm{C}$)
RBW frequency error	within $\pm 6 \%$ of RBW (RBW: $3 \mathrm{kHz}, 30 \mathrm{kHz}$) within $\pm 30 \%$ of RBW (RBW: 100 kHz to 3 MHz)
Frequency span	
Setting range	0 Hz (zero span), 200 kHz to $5 \mathrm{GHz}(1-2-5$ step) and 8.5 GHz (full span)
Accuracy	within $\pm 3 \% \pm 20 \mathrm{TkHz} \pm 1$ dot (frequency span: 200 kHz to $10 \mathrm{MHz}, 23 \pm 5^{\circ} \mathrm{C}$) within $\pm 3 \% \pm 200 \mathrm{TkHz} \pm 1 \operatorname{dot}$ (frequency span: 20 MHz to $8.5 \mathrm{GHz}, 23 \pm 5^{\circ} \mathrm{C}$)
	T: Sweep time(s)
Display resolution	Frequency span/250
	Frequency span/1000 (only the measurement by RS-232C communication)
Display dot number	251 dots, 1001dots (only the measurement by RS-232C communication) (The unit displays data in 251 horizontal dots, but it internally captures the trace in 1001 dots)
Resolution bandwidth	3 dB bandwidth
Setting range	3 kHz to $3 \mathrm{MHz}(1-3 \mathrm{step})$ and AUTO
Accuracy	within $\pm 20 \%$
Selectivity	1:12 (typical, 3dB : 60dB)
Video bandwidth	100 Hz to 1 MHz (1-3step), and AUTO
SSB phase noise	$-90 \mathrm{dBc} / \mathrm{Hz}$ (typical, 100kHz offset, RBW: 3kHz, VBW: 100Hz, Sweep time: 0.3 s)
Spurious response	less than -60 dBc
Harmonics	less than $-40 \mathrm{dBc}(100 \mathrm{MHz}$ to 8.5 GHz$)$

- Amplitude section

Reference level

Setting range
Accuracy

$$
\begin{aligned}
& +10 \text { to }-60 \mathrm{dBm}(1 \mathrm{~dB} \text { step }) \\
& \text { within } \pm 0.8 \mathrm{~dB} \pm 1 \mathrm{dot}
\end{aligned}
$$

(center frequency: $100 \mathrm{MHz}, \mathrm{RBW}: 3 \mathrm{MHz}, \mathrm{VBW}: 1 \mathrm{MHz}, \mathrm{ATT}: 0 \mathrm{~dB}, 23 \pm 5^{\circ} \mathrm{C}$)

Unit
$\mathrm{dBm}, \mathrm{dBV}, \mathrm{dBmV}, \mathrm{dB} \mu \mathrm{V}, \mathrm{dB} \mu \mathrm{V} / \mathrm{m}, \mathrm{dB} \mu \mathrm{A} / \mathrm{m}$
$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ and $\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$ is used the measuring function)

Average noise level	$-110 \mathrm{dBm}($ typical, center frequency: $1 \mathrm{GHz}, \mathrm{RBW}: 3 \mathrm{kHz}, \mathrm{VBW}: 100 \mathrm{~Hz})$
Frequency Characteristic	within $\pm 2.0 \mathrm{~dB} \pm 1 \mathrm{dot}(100 \mathrm{kHz}$ to 100 MHz$)$
	within $\pm 1.0 \mathrm{~dB} \pm 1 \mathrm{dot}(100 \mathrm{MHz}$ to 8.5 GHz$)$
Input impedance	50Ω
Input VSWR	less than 2.0
Input attenuator	
\quad Operating range	0 to $25 \mathrm{~dB}(1 \mathrm{~dB}$ step), coupled with reference level
\quad Switching error	within $\pm 0.6 \mathrm{~dB}$
RBW switching error	within $\pm 0.6 \mathrm{~dB}$
Display dot number	200 dots
Display scale	
Scale	$10 \mathrm{~dB} / \mathrm{div}, 2 \mathrm{~dB} / \mathrm{div}$
Accuracy	within $\pm 0.8 \mathrm{~dB} / 10 \mathrm{~dB} \pm 1 \mathrm{dot}$
	within $\pm 0.2 \mathrm{~dB} / 2 \mathrm{~dB} \pm 1$ dot
Input damage level	within $\pm 1.6 \mathrm{~dB} / 70 \mathrm{~dB} \pm 1 \mathrm{dot}$

- Sweep section

Sweep time

Setting range	10ms to 30 s (1-3step, frequency span: 0 to 2 GHz) and AUTO
	30 ms to 30 s (1-3step, frequency span: 5 GHz) and AUTO
Accuracy	within $\pm 0.1 \% \pm 1$ dot (frequency span: 0 to 5 GHz)
	within $\pm 2.5 \% \pm 1 \operatorname{dot}$ (frequency span: full span)
Trigger mode	AUTO(frequency span: zero span)
Detection mode	Positive peak, Negative peak, Sample

- Functions

Marker

Peak search

NORM: displays frequency (7digits max) and level (4digits max) at marker point.
DELTA: displays differential frequency and level between 2 markers.
NORM: searches a peak point within 10div. Available NEXT peak (10max).
ZONE: searches a peak point within a zone designated by center and width.
Marker moves to a peak point each sweep.

Calculation	NORM, MAX HOLD, MIN HOLD, AVERAGE, OVER WRITE MAX/MIN HOLD: 2 to 1024 times, AVERAGE: 2 to 256
Measuring	Channel power, Adjacent channel leakage power, Occupied frequency bandwidth, Electric field strength (needs antenna), Magnetic field strength (needs optional magnetic field probe) measurement.
AUTO tuning	When pushing AUTO TUNE key, the maximum level spectrum within 8.5 GHz bandwidth is adjusted to center, and reference level, RBW, VBW and sweep time are adjusted to optimum values.
Save/Load	
Save	Saves 100 traces and 100 setups
Load	Loads 1 trace and 1 setup
- General	
Immunity of radiated interference	
Level display at $10 \mathrm{~V} / \mathrm{m}$	Less than -35 dBc (reference level: 10 dBm)
Immunity to cabled interference	
Level display at transient interference of 4.0 kV	Less than -30 dBc (reference level: 10 dBm)
Input connector	SMA(J)
Communication	
Interface	RS-232C
Baud rate	2400 to 38400bps
Hard copy	Allows direct hard copy with an optional printer.
Display	
Display	LCD
Backlight	CFL backlight
Resolution	$240(\mathrm{~V}) \times 320$ (H) dots
Power source	
Battery	Ni-MH battery (optional)
External DC source	DC jack, +4.75 to +5.25 VDC/4A

- Other	
Operating temperature	
Operating humidity	
	0 to $40^{\circ} \mathrm{C}\left(\right.$ Guaranteed at $23 \pm 10^{\circ} \mathrm{C}$, without soft carrying case) less than $40^{\circ} \mathrm{C} / 80 \% \mathrm{RH}$
Storage temperature	$\left(\right.$ Guaranteed at less than $33^{\circ} \mathrm{C} / 70 \% \mathrm{RH}$, without soft carrying case)
Dimensions	-20 to $60^{\circ} \mathrm{C}$, less than $60^{\circ} \mathrm{C} / 70 \% \mathrm{RH}$
Weight	$162(\mathrm{~W}) \times 70(\mathrm{H}) \times 260$ (D) mm (exclude projections and stand) approx. 1.8 kg (include battery), approx. 1.5 kg (without battery)

2.3 Outline

[Unit: mm]

* B\&K Precision Corporation reserves the right to make changes in design, specification and other information without prior notice.

1) LCD screen

This is a large liquid crystal display with $240(\mathrm{~V}) \times 320(\mathrm{H})$ dots. It simultaneously displays traces $(8$ div $\times 10$ div), various setting values, measured values, etc.

2) Input connector

SMA (J) connector.

3) Input connector for $D C$ power source

Connects AC adaptor BC2650.

4) RS-232C connector

Connects PC and printer, by using RS-232C cable.

5) Function keys (F1 to F6)

Functions change according to operation. Have functions corresponding to the on-screen displays.

6) Center frequency key

2650: Use this key to set the center frequency. It can set between 0 to 3.3 GHz (100 kHz step).
2658: Use this key to set the center frequency. It can set between 0 to 8.5 GHz (100 kHz step).

7) Frequency span key

2650: Use this key to set the frequency span. It can set between 200 kHz to 2 GHz , ZERO SPAN and FULL SPAN (3.3 GHz).
2658: Use this key to set the frequency span. It can set between 200 kHz to 5 GHz , ZERO SPAN and FULL SPAN $(8.5 \mathrm{GHz})$.

8) Reference level key

Set the reference level, etc. Reference level can set between +10 dBm and -60 dBm (1 dB step).

9) Resolution bandwidth key

Use this key to set the resolution bandwidth. It can set between 3 kHz and 3 MHz .

10) Video bandwidth key

Use this key to set the video bandwidth. It can set between 100 Hz and 1 MHz .

11) AUTO tuning key

Tune up to the maximum level in $3.3 \mathrm{GHz}(2650) / 8.5 \mathrm{GHz}(2658)$ zones, and display by the optimal setup. This does not operate normally when the signal level is lower than -40 dBm , or when the input frequency is below 50 MHz , or when the frequency span is ZERO SPAN or FULL SPAN.

12) Measuring function key

Available for Channel power, Adjacent channel leakage power, Occupied frequency bandwidth, Electric field strength and Magnetic field strength measurement (optional).

13) Calculation function key

Available for Max hold, Min hold, Average and Over write.

14) Display scale key

Use this key to select the display scale of amplitude axis from $2 \mathrm{~dB} / \mathrm{div}$ or $10 \mathrm{~dB} / \mathrm{div}$.

15) Sweep key

Use this key to set the sweep time between 10 ms to 30 s or set the detection mode.

16) Hold/Run key

Stops or restarts the measurement.

17) Marker \& Peak search key

Use this key to set and move a marker.

18) Save/Load key

Saves 100traces and 100setups, and loads 1 trace and 1setup.

19) Print key

When pressing this key, the image is printed with a printer PT 2650 (optional) as it is.

20) RS-232C key

Sets baud rate and transfers a current or saved trace.

21) Display control key

Sets contrast, backlight ON/OFF, brightness of backlight, invert display and buzzer ON/OFF.

22) Rotary encoder

Use this to make various settings.

23) Power switch

Use this to turn the power ON or OFF.

4. Description of Screen

5. Function Key Menu

5.1 List of the Function key menus

The types of function keys are shown in the table below. For description of each function, see the detailed pages. For the flow of change in the function key display, refer to " 5.2 Menu tree".

N	Function key menus	Key flow	Detailed page	-	Function key menus	Key flow	Detailed page
$\begin{aligned} & \text { A } \\ & \text {) } \end{aligned}$	Adj Ch OF S	$\begin{aligned} & \text { MEAS } \rightarrow(\text { F } 6) \rightarrow(\text { F } 2) \\ & \rightarrow \text { F } 2 \end{aligned}$	39	M)	MODE	$\begin{aligned} & \text { MEAS } \rightarrow(\text { F } 6) \rightarrow(\text { F } 1 \\ & \sim 3) \rightarrow F 1 \end{aligned}$	$\begin{aligned} & 38, \\ & 39, \\ & 40 \end{aligned}$
	Adj Ch Pw	MEAS \rightarrow (F 6) \rightarrow F 2	39				
	Adj Ch WI DTH	$\begin{aligned} & \text { MEAS } \rightarrow \text { (F6) } 6 \text { (F } 2 \text {) } \\ & \rightarrow \text { F } 3 \end{aligned}$	39				
	ANT	$\begin{aligned} & \text { MEAS } \rightarrow \text { (F6) } 6 \text { (F5) } \\ & \rightarrow \text { F } 1 \end{aligned}$	42	$\begin{gathered} \mathrm{N} \\ \text {) } \end{gathered}$	NORM	CALC \rightarrow F 1	32
	AVER	CALC \rightarrow F 4	32		NUM	FREQ \rightarrow F 5	23
B)	B. L .	DSPL F^{2}	48	O)	Occ BW	MEAS \rightarrow (F 6) \rightarrow F 3	40
	$\begin{aligned} & \text { B A C K SPAC } \\ & \text { E } \end{aligned}$	FREQ ${ }^{\text {F }} 5 \rightarrow$ F 6	23		OFS d B	REFER \rightarrow F 5	27
	BAND CNTR	$\begin{aligned} & \text { MEAS } \rightarrow(\text { F } 6) \rightarrow(\text { F } 1 \text {) } \\ & \rightarrow \\ & \left(\begin{array}{l} \text { F } 1) \rightarrow F \end{array}\right. \end{aligned}$	38		OVRWR	$\begin{aligned} & \mathrm{CALC} \rightarrow \mathrm{~F} 5 \\ & \mathrm{MKR} \rightarrow(\mathrm{~F} 3) \rightarrow \mathrm{F} 4 \end{aligned}$	33
				P	PEAK SEARCH CNTR		33
	$\begin{aligned} & \text { B A ND WID T } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { MEAS } \rightarrow(\text { F } 6) \rightarrow(\text { F } 1) \\ & \rightarrow \\ & (\text { F } 1 \text {) } \rightarrow \text { F } 3 \end{aligned}$	38		PEAK SEARCH NEXT	$\mathrm{MKR} \rightarrow(\mathrm{F} 3) \rightarrow \mathrm{F} 5$	33
					PEAK SEARCH NORM	$\mathrm{MKR} \rightarrow(\mathrm{F} 3) \rightarrow \mathrm{F} 3$	33
	B AUD	$\mathrm{RS} 232 \mathrm{C} \rightarrow \mathrm{F} 2$	50		$\begin{aligned} & \text { PEAK SEARCH } \\ & \text { PEAK } \end{aligned}$	$\mathrm{MKR} \rightarrow(\mathrm{F} 3) \rightarrow \mathrm{F} 4$	33
	B L C TR	DSPL F 3	48		PEAK SEARCH WIDTH	$\mathrm{MKR} \rightarrow(\mathrm{F} 3) \rightarrow \mathrm{F} 5$	33
	B U Z ZR	D SPL F 5	48		PEAK SEARCH ZONE	$M K R \rightarrow($ F 3) \rightarrow F 3	33
c)	$\begin{aligned} & \text { CENTER FR } \\ & \text { EQ } \rightarrow \end{aligned}$	FREQ \rightarrow F 1	23		PRE SET	SAVE/LOAD ${ }^{\text {F }} 6$	36
	$\begin{aligned} & \text { CENTER FR } \\ & \text { EQ } \leftarrow \end{aligned}$	$F R E Q \rightarrow F 2$	23		PROBE	$\begin{aligned} & \text { MEAS } \rightarrow(\text { F } 6) \rightarrow(\text { F } 5) \\ & \rightarrow \text { F } 1 \end{aligned}$	47
	Ch Power	$\mathrm{MEAS} \rightarrow(\mathrm{F} 6) \rightarrow \mathrm{F} 1$	38	$\begin{gathered} R \\ \text { R } \end{gathered}$	RATIO	$\begin{aligned} & \mathrm{MEAS} \rightarrow(\mathrm{~F} 6) \rightarrow(\mathrm{F} 3) \\ & \rightarrow \mathrm{F} 2 \end{aligned}$	40
	CLEAR	SAVE/LOAD \rightarrow F 3	36		RBW ALL	$\mathrm{RBW} \rightarrow \mathrm{F} 3$	29
	CONV	MKR \rightarrow F 6	34		RBW AUTO	$\mathrm{RBW} \rightarrow \mathrm{F} 2$	29
	CTRS	DSPL F 1	48		RBW MANU	R BW \rightarrow F 1	29
$\begin{aligned} & \mathrm{D} \\ & \mathrm{I} \end{aligned}$	DET	SWEEP \rightarrow F 4	30		REFERENCE CN TR	$\begin{aligned} & \text { MEAS } \rightarrow \text { (F6) } \rightarrow \text { (F } 2) \\ & \rightarrow \text { F } 4 \end{aligned}$	38
	$\begin{aligned} & \text { D I SP CLEA } \\ & \text { R } \end{aligned}$	SAVE/LOAD \rightarrow F 4	36		REFERENCE WI D TH	$\begin{aligned} & \text { MEAS } \rightarrow \text { (F6) } \rightarrow(\text { F } 2) \\ & \rightarrow \text { F } 5 \end{aligned}$	38

$\begin{array}{\|l\|} \hline \mathrm{E} \\ \\ \hline \end{array}$	E/F ANT	$\begin{aligned} & \text { MEAS } \rightarrow \text { (F6) } \rightarrow \text { (F3 }) \\ & \rightarrow F 4 \end{aligned}$	41
	Encs T	FREQ \rightarrow 4	23
	EXEC	RS $232 \mathrm{C} \rightarrow \mathrm{F} 3$	50
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	IMP	REFER \rightarrow F 6	28
	INVT	DSPL ${ }^{\text {c }} 4$	48
K)	KeyST	FREQ \rightarrow F	23
L M)	LOAD	SAVE/LOAD \rightarrow F 2	35
	M/F PROBE	MEAS \rightarrow (F 6) \rightarrow F 5	46
	MAXHD	CALC \rightarrow F 2	32
	MEAS OFF	$\begin{aligned} & \text { MEAS } \rightarrow(\text { F } 1 \sim 5) \rightarrow F \\ & 6 \end{aligned}$	37
	M INHD	CALC \rightarrow F 3	32
	MKR DELTA	MKR \rightarrow F 2	33
	MKR NORM	MKR \rightarrow F 1	33

S	SAVE	SAVE/LOAD \rightarrow F 1	35
	SCALE 10dB	SCALE \rightarrow F 1	28
	SCALE 2dB	SCALE \rightarrow F 2	28
	SET MKR	FREQ \rightarrow F	24
	SWEEP ALL	SWEEP \rightarrow F 3	30
	SWEEP AUTO	SWEEP \rightarrow F 2	30
	SWEEP MANU	SWEEP \rightarrow F 1	30
T	TRACE	RS $232 \mathrm{C} \rightarrow \mathrm{F} 1$	50
	UNIT	REFER \rightarrow F 1~4	26
$\begin{aligned} & \mathrm{v} \\ & \text {, } \end{aligned}$	VBW ALL	$\mathrm{VBW} \rightarrow \mathrm{F} 3$	30
	VBW AUTO	V BW \rightarrow F 2	30
	VBW MANU	$\mathrm{VBW} \rightarrow \mathrm{F} 1$	30

5.2 Menu tree

The displayed items on the bottom of the screen correspond to the function keys under them, as shown in the figure below:
"Displayed items on the bottom of the screen"

FREQ

* Refer to "7. Center Frequency" for details

RBW

* Refer to "11. Resolution Bandwidth" for details

MEAS (1/2) * Refer to "19. Measuring Function" for details

CALC

* Refer to "16. Calculation Function" for details

SCALE * Refer to " 16 . Display Scale" for details

SWEEP

DSPL * Refer to "20. Screen Control" for details

SAVE/LOAD * Refer to "18. Save/Load" for details

Load menu

DDelete menu

6. Preparing for Operation

6.1 Stand

Utilize the stand on the back to use the screen in an easier-to-see angle on the desk.

6.2 Connection to power supply

The BC 2650 AC adapter is both for the use with AC power supply and for charging the BP 2650 built-in battery (optional). (charge is started automatically if AC adapter is connected)

Connect the adapter as in the figure below and connect the AC plug to the power line (100-240 VAC, $50 / 60 \mathrm{~Hz})$. For static electricity protection, ground the unit by connecting the three cores if possible. Not grounding the unit can damage it and the object measured. Do not use an AC adapter other than the BC 2650 supplied with the unit. Using an AC adapter other than the BC 2650 may cause damage to the unit.

* If the voltage of a battery becomes low at the time of battery operation, it will be displayed on a screen as "Low Batt", and a buzzer will sound (it sounds, even if it is set up so that a buzzer may not sound), and a power supply will be shut off within several minutes. At that time, since the switch is the position of "ON", please push once and return to the position of "OFF". If it is with the position of "ON" after a power supply is shut off, it discharges inside, will be in electric overdischarge state, and becomes the cause of contracting the life of a battery. Please take care.
* Moreover, under low temperature (near $0^{\circ} \mathrm{C}$), since a battery performance falls and voltage becomes low, even when capacity remains enough, it may display on a screen as "Low Batt".
* When a battery repeats charge and electric discharge, the fall (the fall of capacity and increase in internal resistance) of a battery performance begins from about 200 times, and capacity falls to the original half by about 500 times also under good conditions. On bad conditions (high temperature, etc.), the life of battery will be shorter than this.

6.3 Replacing the fuse

$5 \mathrm{~A} / 250 \mathrm{~V}$ fuse (IEC127-2 sheet3, slow-blow type) is used for the battery power supply. When replacing it, turn the power off first, disconnect the AC adapter, remove the battery cover and on the back as shown in the figure below, remove the battery, and then take sufficient care to perform the replacement.

Be sure to use the fuse supplied with the unit, or specified one.

6.4 Installing the battery

When installing the battery, turn the power off first, disconnect the AC adapter, open the battery cover on the back of the unit after removing the two screws as shown in the figure below, and then take sufficient care to perform the installation. Be sure to use the specified battery, BP 2650.

6.5 Soft carrying case

When carrying the unit or using it outdoors, the soft carrying case is convenient. You can also carry the AC adapter and printer with it, putting them in the accessory pouch.

* Avoid using the unit in the soft carrying case in places where temperature is high because, with the soft carrying case, the temperature inside becomes higher than the ambient temperature.

7. Center Frequency <FREQ>

Press FREO to switch over to the function screen shown below:

* Center frequency can be set between 0 to 3.3GHz.(2650)
* Center frequency can be set between 0 to 8.5 GHz .(2658)
* Center frequency may shift for the time being (1 to 10 sec.), after changing a setting.

7.1 Setting with the step keys ([F1], [F2])

1. Each time F1 is pressed, the center frequency decreases in the set step size.
2. Each time F2 is pressed, the center frequency increases in the set step size.
3. Setting the step size:

Each time F3 is pressed, it is set in the following order:

$$
\square 0.1 \mathrm{MHz} \longrightarrow 1 \mathrm{MHz} \longrightarrow 10 \mathrm{MHz} \longrightarrow 100 \mathrm{MHz} \quad \longrightarrow
$$

7.2 Setting with the encoder

1. When is turned, the center frequency changes in the set step size.
2. Setting the step size:

Each time F4 is pressed, it is set in the following order:
$\square 0.1 \mathrm{MHz} \longrightarrow 1 \mathrm{MHz} \longrightarrow 10 \mathrm{MHz} \rightarrow 100 \mathrm{MHz} \quad \longrightarrow$

7.3 Setting with the numeric keys

1. Press F5 to enter into the numeric key input mode.

* [F5] functions as the <CLEAR> key. [F6] functions as the <BACK SPACE> key.
* In this mode, setting with [F1], [F2] or the encoder is not accepted.

2. The center frequency can be directly input according to the "Numeric Key Mapping Diagram".
3. The value is entered by pressing a unit key, $[\mathrm{MHz}(\mathrm{RS} 232 \mathrm{C})]$ or $[\mathrm{GHz}$ (DSPL)].

* Any figures below the resolution (100 kHz) will be discarded.

4. Changing the setting:
F5 : Deletes the entire value and allows you to input one from the beginning.
F6 : Deletes the last input figure.
5. Canceling the numeric key mode:

FREO : Enables setting with step keys ([F1], [F2]) or the encoder again.
"Numeric Key Mapping Diagram"

7.4 According to the Marker position

1. When F6 is pressed, the center frequency is set according to the frequency of current marker position.

* Any figures below the resolution (100 kHz) will be discarded.
* This does not operate when the marker is not displayed. (and the function display disappears.)

8. Frequency Span

Press \quad SPAN \rightarrow Use 0 to set the frequency span.
*The frequency span can be set only with the encoder. Function keys are not available.
2650 : When is turned, the frequency span changes in the specified step.

2658 : When is turned, the frequency span changes in the specified step.
ZERO $\longleftrightarrow 200 \mathrm{k} \quad \longleftrightarrow 500 \mathrm{k} \quad \longleftrightarrow 1 \mathrm{M} \quad \longleftrightarrow 2 \mathrm{M} \quad \longleftrightarrow 5 \mathrm{M} \quad \longleftrightarrow 10 \mathrm{M} \quad 4$
$\square \mathrm{20M} \longleftrightarrow 50 \mathrm{M} \longleftrightarrow 100 \mathrm{M} \longleftrightarrow 500 \mathrm{M} \longleftrightarrow 1 \mathrm{G} \longleftrightarrow 2 \mathrm{G} \longleftrightarrow 5 \mathrm{G} \longleftrightarrow$ FULL (8.5G) [Hz]

- Switching frequency band

2658 consists of the following three bands.

Frequency band	Measured frequency range
Base band	50 kHz to 3.5 GHz
Band $1-$	3.3 GHz to 6.3 GHz
Band $1+$	6.2 GHz to 8.5 GHz

The frequency band is selected to be the least band number, based on Center frequency and Span.
(At the span less than 200 MHz , only one band is used.)
When the setting frequency range belongs to two bands, the lower band has priority.
Note: Switch frequency band allows only to automatical setting.

The frequency connection point of two bands is fixed as below table.

Two bands	Frequency connection point
Base band and band $1-$	3.4 GHz
Band $1-$ and band $1+$	6.2 GHz

Note: The trace may fall into disorder just a little at the frequency connection point. For the precise measurement is needed, Center frequency or Span should be set so that the measured frequency range is in one band.

9. Reference Level < REFER>

Press REFER to switch over to the function screen shown below:

9.1 Setting the Reference level

1. When is turned, the reference level changes.
(Refer to "9.3 Reference level setting range for each unit" for details.)
9.2 Switching units of amplitude axis $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ and $\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$ are optional. Refer to " 19.4 Electric field strength measurement" and "19.5 Magnetic field strength measurement" for details.)
2. Press \square to switching units to dBm .

Press
 to switching units to $\mathrm{dB} \mu \mathrm{V}$

Press
F3 to switching units to dBmV
Press
F4 to switching units to dBV

9.3 Reference level setting range for each unit

UNIT	dBm	$\mathrm{dB} \mu \mathrm{V}$	dBmV	dBV
MAXIMUM	10	117	57	-3
MINIMUM	-40	67	7	-53
MINIMUM (shifted trace data)	-60	47	-13	-33

"Unit that is able to use it with the measuring function"

UNIT	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ (Electric filed strength measurement)				$\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$ (Magnetic field strength measurement)		
	AN301	AN302	AN303	AN304	AN305	AN306	PR 26M
MAXIMUM	143	146	148	150	137	159	160 to 203
MINIMUM	93	96	98	100	87	109	110 to 153
MINIMUM (shifted trace data)	73	76	78	80	67	89	90 to 133

* When the reference level is set between the "MINIMUN" and "MINIMUN (shifted trace data)", the trace in "MINIMUM" is shifted and displayed on a screen. When the reference level is set below to the "MINIMUM", the ATT display area is displayed as "S/W AMP".

Calculation expression (conversion formula to and from dBm)

$$
\begin{aligned}
& \cdot \mathrm{A}[\mathrm{~dB} \mu \mathrm{~V}]=107+\mathrm{X}[\mathrm{dBm}] \quad \cdot \mathrm{B}[\mathrm{dBmV}]=47+\mathrm{X}[\mathrm{dBm}] \quad \cdot \mathrm{C}[\mathrm{dBV}]=-13+\mathrm{X}[\mathrm{dBm}] \\
& \cdot \mathrm{D}[\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}]=68.8 / \lambda \times \sqrt{ }(\mathrm{X} / \mathrm{Gar})[\mathrm{dBm}] \quad \lambda: \text { Wavelength }[\mathrm{m}] \quad \text { Gar: Antenna absolute gain [times] } \\
& \cdot \mathrm{E}[\mathrm{~dB} \mu \mathrm{~A} / \mathrm{m}]=180+\mathrm{X}+\mathrm{F}[\mathrm{dBm}] \quad \text { F: probe calibration coefficient } \quad * \text { changes by frequency }
\end{aligned}
$$

9.4 Relation between the reference level and ATT • AMP (in dBm indication)

The programmable attenuator (ATT) and the input amplifier (AMP) inside 2650/2658 are automatically set according to the setting value of the reference level (REFER). (ATT cannot be set independently.)

REFER (dBm)	$\begin{array}{\|l\|} \hline \text { ATT } \\ \text { (dB) } \\ \hline \end{array}$	$\begin{aligned} & \text { AMP } \\ & \text { (dB) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { REFER } \\ (\mathrm{dBm}) \end{array}$	$\begin{array}{\|l} \hline \mathrm{ATT} \\ \mathrm{(dB}) \end{array}$	$\begin{array}{\|l\|} \hline \text { AMP } \\ (\mathrm{dB}) \end{array}$	REFER (dBm)	$\begin{aligned} & \hline \text { ATT } \\ & \text { (dB) } \end{aligned}$	$\begin{aligned} & \hline \text { AMP } \\ & \text { (dB) } \end{aligned}$	REFER (dBm)	$\begin{aligned} & \hline \text { ATT } \\ & \text { (dB) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { AMP } \\ (\mathrm{dB}) \end{array} \\ \hline \end{array}$
10	25	0	-3	12	0	-16	20	21	-29	7	21
9	24	0	-4	11	0	-17	19	21	-30	6	21
8	23	0	-5	10	0	-18	18	21	-31	5	21
7	22	0	-6	9	0	-19	17	21	-32	4	21
6	21	0	-7	8	0	-20	16	21	-33	3	21
5	20	0	-8	7	0	-21	15	21	-34	2	21
4	19	0	-9	6	0	-22	14	21	-35	1	21
3	18	0	-10	5	0	-23	13	21	-36	5	26
2	17	0	-11	4	0	-24	12	21	-37	4	26
1	16	0	-12	3	0	-25	11	21	-38	3	26
0	15	0	-13	2	0	-26	10	21	-39	2	26
-1	14	0	-14	1	0	-27	9	21	-40	1	26
-2	13	0	-15	0	0	-28	8	21			

* When the input signal level is higher than the suitable level for 1st mixer's terminal, it generates harmonics distortion and spurious. 2650/2658 is designed so that the input signal level of 1st mixer is determined to proper level by the reference level.

9.5 Setting the offset level

1.

 to set the offset of reference level.

When amplifier and attenuator are used externally, display level can be matched by offset.
The setting range is from -50.0 to 50.0 dB (0.1 dB step).
Offset is calculated to the reference level, and it is displayed.

* When offset is set, it is displayed on LEVEL display area as "OFS".

Furthermore, the value of a marker point is displayed reflecting the calculated offset.

* Offset of $\mathrm{dB} \mu \mathrm{V}, \mathrm{dBmV}, \mathrm{dBV}, \mathrm{W}$, etc. are changed automatically.

9.6 Setting the input impedance conpensation

1.

F6 \rightarrow to select the input impedance compensation. $50 \Omega \longleftrightarrow 75 \Omega$

When $50 \Omega / 75 \Omega$ coaxial impedance matching pad is attached, and choose " 75Ω ", then offset is calculated to the reference level, and it changes for the measured value as 75Ω system, and display it.

* When " 75Ω " is selected, " 75Ω " is displayed in the LEVEL area on the screen. When " 75Ω " is selected, the offset is set to 5.7 dB (insertion loss of $50 \Omega / 75 \Omega$ coaxial impedance matching pad). Moreover, can set offset.

Moreover, while setting the unit of the marker point to [W, V, V/m] etc, it changes from dBm correctly.

* When you set it as " 75Ω ", please be sure to attach $50 \Omega / 75 \Omega$ coaxial impedance matching pad.

10. Display Scale <SCALE>

Press
SCALE to switch over to the function screen shown below:

10.1 Setting with the keys ([F1], [F2])

1. Press 2. Press F2	
	to set the $10 \mathrm{~dB} / \mathrm{div}$ display scale.

10.2 Setting with the encoder

1. Turn to switch between the $10 \mathrm{~dB} / \mathrm{div}$ and $2 \mathrm{~dB} / \mathrm{div}$ display scale.
$10 \mathrm{~dB} \longleftrightarrow 2 \mathrm{~dB}$

* In 2dB/div, display level may not become smaller than fixed level, by frequency compensation.

11. Resolution Bandwidth <RBW>

Press
RBW
to switch over to the function screen shown below:

* Any selected parts of MANU, AUTO and ALL become inverted display.

11.1 MANUAL mode

1. Press F1 or turn the to enter MANUAL mode. Use to set the RBW. $3 \mathrm{kHz} \longleftrightarrow 10 \mathrm{kHz} \longleftrightarrow 30 \mathrm{kHz} \longleftrightarrow 100 \mathrm{kHz} \longleftrightarrow 300 \mathrm{kHz} \longleftrightarrow 1 \mathrm{MHz} \longleftrightarrow 3 \mathrm{MHz}$

11.2 AUTO mode

1. When F2 is pressed, optimum RBW is set according to the settings of SPAN and SWEEP.

* Since "*" is displayed on the right end of RBW setting value display portion of a screen when set as AUTO mode, it can check being set as AUTO mode.

11.3 ALL AUTO mode

1. When F3 is pressed, optimum RBW, VBW and SWEEP are set according to the setting of SPAN.

* Since "*" will be displayed on the right end of each setting value display portion of RBW, VBW, and SWEEP if ALLAUTO mode is set up, it can check being set as ALLAUTO mode.
* When RBW is set as 3 kHz or 10 kHz , selectivity (60 dBc) becomes larger than an actual value, by influence of SSB phase noise.

12. Video Bandwidth <VBW>

Press VBW to switch over to the function screen shown below:

* Any selected parts of MANU, AUTO and ALL become inverted display.

12.1 MANUAL mode

12.2 AUTO mode

1. When F2 is pressed, VBW is set according to the settings of SPAN and SWEEP.

* Since " $*$ " is displayed on the right end of VBW setting value display portion of a screen when set as AUTO mode, it can check being set as AUTO mode.

12.3 ALL AUTO mode

1. When F3 is pressed, RBW, VBW and SWEEP are set according to the setting of SPAN.

* Since "*" will be displayed on the right end of each setting value display portion of RBW, VBW, and SWEEP if ALLAUTO mode is set up, it can check being set as ALLAUTO mode.

13. Sweep Axis • Detection Mode <SWEEP>

Press SWEEP to switch over to the function screen shown below:

* Any selected parts of MANU, AUTO and ALL become inverted display.

When [F4] is pressed, the part of DET become inverted display.

13.1 MANUAL mode

1. Press \quad F1 or turn the 0 to enter MANUAL mode. Use to set the SWEEP.
$10 \mathrm{~ms} \longleftrightarrow 30 \mathrm{~ms} \longleftrightarrow 0.1 \mathrm{~s} \longleftrightarrow 0.3 \mathrm{~s} \longleftrightarrow 1 \mathrm{~s} \longleftrightarrow 3 \mathrm{~s} \longleftrightarrow 10 \mathrm{~s} \longleftrightarrow 30 \mathrm{~s}$

* 2650: Can't set 10 ms at the FULLSPAN.
* 2658: 30ms to30s and AUTO @ Span 0 to $5 \mathrm{GHz} \quad 0.1$ to 30 s and AUTO @Full span

13.2 AUTO mode

1. When F2 is pressed, SWEEP is set according to the settings of SPAN and RBW.

* Since "*" is displayed on the right end of SWEEP setting value display portion of a screen when set as AUTO mode, it can check being set as AUTO mode.

13.3 ALL AUTO mode

1. When F3 is pressed, RBW, VBW and SWEEP are set according to the setting of SPAN.

* Since "*" will be displayed on the right end of each setting value display portion of RBW, VBW, and SWEEP if ALLAUTO mode is set up, it can check being set as ALLAUTO mode.

13.4 Setting the Detection mode

1. Pressing F4 allows you to change the method to capture the trace.

- PosPK (Positive Peak) : Traces the maximum value of the sample points.
- SMPL (Sample) : Traces the momentary value of the sample points.
- NegPK (Negative Peak) : Traces the minimum value of the sample points.

14. AUTO Tuning <AUTO TUNE>

When \square is pressed, center frequency is set at the spectrum of the maximum level in the $3.3 \mathrm{GHz}(2650) / 8.5 \mathrm{GHz}(2658)$ band, and in addition, optimum reference level, RBW, VBW and SWEEP are set according to the setting of SPAN.

* The AUTO tuning does not operate normally, at the time of the following 4 conditions.

1) ZERO SPAN
2) FULL SPAN
3) Signal level is -40 dBm or lower
4) Signal frequency is 50 MHz or lower

16. Calculation Function <CALC>

Press

to switch over to the function screen shown below:

* After sweeps stops, press HOLD/RUN to restart sweep.
* Press [F1] to [F5] to set the CALC mode.
* Use to set the number of sweeps.

16.1 NORM mode

1. Press \square Calculation is not performed in this mode. The number of sweeps is always unlimited.

* Usually, please choose this mode.
* "NORMAL" is displayed in the CALC area on the LCD screen.
(Refer to "4. Description of Display" for details)

16.2 MAX HOLD mode

1. Press $\quad \mathbf{F} 2 \rightarrow$ Use 0 to set the number of sweeps.
2. Sweeps are performed the set number of times, the maximum value of each point of trace data is displayed as a trace, and then sweep is halted.

* "MAX --- (number of sweeps)" is displayed in the CALC area on the LCD screen.
(Refer to "4. Description of Display" for details)

16.3 MIN HOLD mode

1. Press

2. Sweeps are performed the set number of times, the minimum value of each point of trace data is displayed as a trace, and then sweep is halted.

* "MIN --- (number of sweeps)" is displayed in the CALC area on the LCD screen.
(Refer to "4. Description of Display" for details)

16.4 AVERAGE mode

1. Press \square \longrightarrow Use
 to set the number of sweeps.
2. Sweeps are performed the set number of times, average value of each point of trace data is displayed as a trace, and then sweep is halted.

$$
2 \longleftrightarrow 4 \longleftrightarrow 8 \longleftrightarrow 16 \longleftrightarrow 32 \longleftrightarrow 64 \longleftrightarrow 128 \longleftrightarrow 256
$$

* "AVG --- (number of sweeps)" is displayed in the CALC area on the LCD screen.
(Refer to "4. Description of Display" for details)

16.5 OVER WRITE mode

1. Press F5 to enter into the OVER WRITE mode, where traces are written one over another. The number of sweeps is unlimited.

* "OVER WR" is displayed in the CALC area on the LCD screen.
(Refer to "4. Description of Display" for details)
* Only the last one trace is saved.

16.6 SPURIOUS FREE mode

1. By pushing F6 it will become the SPURIOUS FREE mode which simply deletes spurious characteristic at band $1+$.

* "SPR." is displayed beside CALC in liquid crystal screen CALC area.
(Refer to "4. Description of Display" for details)
* The SUPURIASU characteristic at band $1+$ is a spurious calculated by the following formula for a input signal over 6.76 GHz , in case of measurement at band $1+$.
(Refer to "8. Frequency Span" for details)
Spurious characteristic at band $1+[\mathrm{GHz}]=($ Input signal $[\mathrm{GHz}]+5.64 \mathrm{GHz}) / 2$
* SPURIOUS FREE mode

1. SPURIOUS FREE mode is the mode which simply deletes SUPURIASU characteristic at band $1+$.
2. SPURIOUS FREE mode has a special effect in measurement of a regular wave.
3. If SPURIOUS FREE mode is used in measurement of a signal with level change or frequency change, the phenomenon will happen that an amplitude level falls.

* How to discriminate SPURIOUS characteristic at band 1+ in manual operation

The procedure for discriminating SUPURIOS characteristic at band $1+$ is as follows.

1. Set to $\operatorname{SPAN}=10 \mathrm{MHz}$.
2. Set the frequency of SUPEKUTORAMU to be discriminated to the center frequency of 2658 .
3. Verify that SUPEKUTORAMU to be discriminated is at the center of a screen, and change the main frequency by +1 MHz .
4. Judge by measured trace data.

The same frequency as the frequency set up first. \longrightarrow Measurement data.

2 MHz over Main frequency changed by $+1 \mathrm{MHz} \longrightarrow$ Spurious characteristic at band $1+$ Example: Discriminate SUPEKUTORAMU displayed on 7GHz.

1. Set 2658 to $\operatorname{SPAN}=10 \mathrm{MHz}$ and main frequency $=7 \mathrm{GHz}$.
2. Verify that SUPEKUTORAMU is at 7 GHz .
3. Set 2658 to Main frequency $=7.001 \mathrm{GHz}$.
4. Measure spectrum and distinguish as follows.

Spectrum is at $7 \mathrm{GHz} . \quad \longrightarrow$ Measurement data.
Spectrum is at $7.003 \mathrm{GHz} . \longrightarrow$ SUPURIA S characteristic at band $1+$.

17. Marker • Peak Search <MKR>

Press MKR to switch over to the function screen shown below:

- The display when a NORM marker is selected.

The marker is manually moved at NORM mode. Peak search function, NEXT peak search function are available.

- The display when a ZONE marker is selected.

The marker moves to the biggest peak position automatically at ZONE mode, inside specified zone.

17.1 Moving the marker

	Use	F1
Use	F2	
	to move the marker.	

17.2 Setting the peak search <PEAK SEARCH>

. NORM mode (Use F3 to select NORM.)
Use F4 to move the marker to the maximum peak position.
Use F5 to move the marker successively from higher to lower peak positions other than the maximum peak. (The marker moves to 10 peaks.)

* When you move the marker to the 10th peak or moving the marker, the NEXT peak search function stops and the function display disappears.

17.3 Changing the unit of marker point

Press F6 to change the unit of marker point.
When unit of reference level is dBm , the unit is changed from [dBm] to [W].
When unit of reference level is $\mathrm{dB} \mu \mathrm{V}$, the unit is changed from $[\mathrm{dB} \mu \mathrm{V}, \mathrm{dBmV}, \mathrm{dBV}]$ to $[\mathrm{V}]$.
When unit of reference level is $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the unit is changed from $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$ to $[\mathrm{V} / \mathrm{m}]$.
When unit of reference level is $\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$, the unit is changed from $[\mathrm{dB} \mu \mathrm{A} / \mathrm{m}]$ to $[\mathrm{A} / \mathrm{m}]$.
Moreover, according to each unit, it is displayed as follows.
$[\mathrm{W}] \rightarrow[\mathrm{W}, \mathrm{mW}, \mu \mathrm{W}, \mathrm{nW}, \mathrm{pW}, \mathrm{fW}]$
$[\mathrm{V}] \longrightarrow[\mathrm{V}, \mathrm{mV}, \mu \mathrm{V}, \mathrm{nV}]$
$[\mathrm{V} / \mathrm{m}] \longrightarrow[\mathrm{V} / \mathrm{m}, \mathrm{mV} / \mathrm{m}, \mu \mathrm{V} / \mathrm{m}, \mathrm{nV} / \mathrm{m}]$
$[\mathrm{A} / \mathrm{m}] \longrightarrow[\mathrm{A} / \mathrm{m}, \mathrm{mA} / \mathrm{m}, \mu \mathrm{A} / \mathrm{m}, \mathrm{nA} / \mathrm{m}]$

Press SAVELOAD to switch over to the function screen shown below:

18.1 Saving the data

1. Press F1 to move to a save menu.
2. Operating F1 chooses objects (trace or parameter).
3. Use to set the number of location.
$00 \longleftrightarrow 01 \longleftrightarrow 02 \longleftrightarrow 03 \longleftrightarrow 04 \longleftrightarrow \cdots \longleftrightarrow 98 \longleftrightarrow 99$
4. Press F3 to save the data.

* This saves the trace when TRACE is selected, or the setting parameters when PARAM is selected.
* " $*$ " is displayed on the right end of the number of location place at which data is saved.
* It can be overwritten, too

18.2 Loading the data

1. Press F2 to move to a load menu.
2. Operating F1 chooses objects (trace or parameter).
3. Use to set the number of location.
$00 \longleftrightarrow 01 \longleftrightarrow 02 \longleftrightarrow 03 \longleftrightarrow 04 \longleftrightarrow \ldots \longleftrightarrow 98 \longleftrightarrow 99$
4. Press F3 to load the data.

* This reads out the trace when TRACE is selected. The setting parameter of the loaded trace is displayed in the loaded trace information display area.
(Refer to "4. Description of Display" for details)
* This reads out the setting parameters when PARAM is selected.
* When you load a trace, the current trace disappears, the HOLD state is set, and the loaded trace
is displayed. For the loaded trace, you can use the marker, but cannot use a measuring function. When you press the HOLD/RUN key, the loaded and the current traces are displayed overlapping each other.
* "*" is displayed on the right end of the number of location place at which data is saved.

18.3 Clearing the date

18.4 Clearing the loaded trace

1. Press F5 to clear the loaded trace that has been displayed.

18.5 Presetting (Initialization)

1. Press F6 to preset the setting parameters as the Initialization shown below:
"Initialization"

Items	Parameter
Center frequency	1 GHz
Frequency span	20 MHz
Reference level	10 dBm
Offset	0.0 dB
Impedance	50Ω
Sweep time	0.3 s
Detection mode	Positive peak mode
RBW	100 kHz
VBW	10 kHz
Display scale	$10 \mathrm{~dB} / \mathrm{div}$

19. Measuring Function<MEAS>

Press
MEAS
to switch over to the function screen shown below:

Select the measuring function:

F1	Ch Power Channel power measurement
F2	Adj Ch Pw Adjacent channel leakage power measurement
F3	Occ BW \ldots. Occupied frequency bandwidth measurement
F4	
F5	M/F PROBE Magnetic field strength measurement (optional)

* Once you select the measuring function, pressing MEAS next time will directly bring up the function screen for the function you selected the last time. If you want to stop the measuring function, or if you want to select another measuring function, press [F6] (MEAS OFF). This stops the measuring function and switches to the above screen, which allows you to select the measuring function.
* The measuring function is stops, when push MKR while these 3 functions (Channel power, Adjacent channel leakage power, Occupied frequency bandwidth) are selected. Because each 3 functions and marker operation cannot be used simultaneously. Similarly, the function of the marker stops, when the functions of these 3 measurements are selected while using the marker.
* The unit displays data in 251 horizontal dots, but it internally captures the trace and calculates the measured value (Channel power measurement, Adjacent channel leakage power measurement and Occupied frequency bandwidth measurement) in 1004 dots.

19.1 Channel power measurement <Ch Power>

Measures the sum of the power in the zone specified. Two modes, TOTAL and BAND, are available.

- TOTAL mode [Use

Measure the sum of the power in the zone specified by the center frequency and frequency span (whole range of the screen).

* It is shown on MEAS area of LCD as "CPTOTAL"
* The measured value is displayed at the right lower corner on the screen.
- BAND mode [Use F1 (MODE) to select BAND.]

Measure the sum of the power in the zone specified by the zone center frequency and zone width.

[Parameter]

19.2 Adjacent channel leakage power measurement <Adj Ch Pw> F2

Measures the adjacent channel leakage power as the ratio of the power in the range specified by the offset frequency against the reference frequency (reference carrier frequency) and the bandwidth, to the carrier wave power. Two channels of adjacent waves on the upper and lower sides of the same offset frequency are measured. In addition, you can select from three modes, TOTAL (total power method), REF BAND (in-band method) and PEAK (reference level method), according to the classification of definitions of carrier wave.

- Mode selection and measurement [Use

F1
(MODE) to select a mode: TOTAL, BAND or PEAK.]

* It is each shown on MEAS area of LCD as "ACP TOT", "ACP BAND" or "ACP PK".
* The measured value and setting parameter are displayed at the right lower corner on the screen.

offset frequency of adjacent channel.
* The offset is from the center of the reference carrier wave.
 band width of adjacent channel.

3. Use \quad F4 (REFERENCE CNTR) \rightarrow to set the center frequency of reference carrier.

* [F4] is only for the TOTAL and BAND mode.

4. Use F5 (REFERENCE WIDTH) \rightarrow to set
the band width of reference carrier.

* [F5] is only for the BAND mode.
- Definition of the reference carrier for each mode

19.3 Occupied frequency bandwidth measurement <Occ BW>

Measures the bandwidth at the point of $\mathrm{N}[\%]$ of total power (N\% POWER) or the bandwidth at the point X [dB] down from the peak level (XdB DOWN). Two modes are available.

- N\% POWER mode [Use

F1 (MODE) to select N\%.]

Measures the bandwidth at the point of $\mathrm{N}[\%]$ of total power displayed on the screen.

* It is shown on MEAS area of LCD as "OBW N\%"
* The measured value is displayed at the right lower corner on the screen.

1. Use $\quad \mathbf{F} 2$ the percentage to total power.

* Setting range: 80.0 to 99.9%
- XdB DOWN mode [Use F 1 (MODE) to select XdB.]

Measures the bandwidth at the point $\mathrm{X}[\mathrm{dB}]$ down from the peak level,

* It is shown on MEAS area of LCD as "OBW XdB"
* The measured value is displayed at the right lower corner on the screen.

1. Use

$(\mathrm{dB}) \longrightarrow \bigcirc$ to set the down level from peak level.

* Setting range: 0.1 to 80.0 dB

19.4 Electric field strength measurement <E/F ANT>

Measures electric field strength by connecting an optional antenna.
Allows using an antenna other than options by creating and inputting the original compensation table.
(Refer to "23.6 Writing of original compensation data" for how to create and write)

[Measurement environment]

"Specifications of the antenna (antenna gain and VSWR are specified at a center of frequency range)."

Items	AN 301	AN 302	AN 303	AN 304	AN 305	AN 306
Type	Sleeve	Sleeve	Sleeve	Sleeve	$1 / 4 \lambda$ whip	Sleeve
Frequency range	0.8 to 1.0 GHz	1.25 to 1.65 GHz	1.70 to 2.20 GHz	2.25 to 2.65 GHz	300 to 500 MHz	4.7 to 6.2 GHz
Antenna gain	+1 dBi or higher	+1dBi or higher	+1 dBi or higher	+1 dBi or higher	+1dBi or higher	+1dBi or higher
VSWR	1.5 or lower					
Dimensions	$7.5 \varphi \times 250 \mathrm{~mm}$	$7.5 \varphi \times 250 \mathrm{~mm}$	$7.5 \varphi \times 180 \mathrm{~mm}$	$7.5 \varphi \times 180 \mathrm{~mm}$	$8.0 \varphi \times 195 \mathrm{~mm}$	$7.5 \varphi \times 100 \mathrm{~mm}$
Weight	approx. 20 g	approx. 20 g	approx. 20 g	approx. 20 g	approx.30g	approx. 10 g
Reference level setting range (except for the minimum value in screen shift)	$\begin{gathered} 93 \text { to } \\ 143 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} 96 \text { to } \\ 146 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} 98 \text { to } \\ 148 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} 100 \text { to } \\ 150 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} 87 \text { to } \\ 137 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} 109 \text { to } \\ 159 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$

* Measured value varies depending on how to have HM5033 main unit. Moreover, if the person who has is different, measured value will vary. Because M305 is $1 / 4 \lambda$ whip antenna. Therefore, in the measurement used an antenna M305, measurement errors occurs. The error value is several dB
or 10 dB or more. In order to lessen the error value, use it, separating from the body as much as possible so that there is no influence of human body.

- Mode selection and measurement

Use F1 (ANT) to select an antenna, AN 301, AN 302, AN 303, AN 304, AN 305,AN 306 or USER.
As soon as the antenna is entered, the measurement is taken.

* It is each shown on MEAS area of LCD as "E/F AN301", "E/F AN302", "E/F AN303",
"E/F AN304", "E/F AN305", "E/F AN306" or "E/F USER".
* USER" is an original compensation table the user crates.
(Refer to "23.1 Command description" for details.)
* Trace may exceed from a screen by antenna gain compensation.

- Antenna directivity (reference data)

* All the data are those when the antenna is connected to the RF input with no obstacles around.
* However, data of 305 is reference data of the conditions in which people have 2650/2658 attached 305 .
So, the directivity changes in practice, because, for example, the unit is carried by people.

AN 301 (900MHz, E plane)

AN 302 (1.5 GHz , E plane)

Antenna gain vs Frequency

Antenna gain vs Frequency

AN 303 (2.0GHz, E plane)

AN 304 (2.4GHz, E plane)

Antenna gain vs Frequency

Antenna gain vs Frequency

AN 305 (horizontal plane)

19.5 Magnetic field strength measurement <M/F PROBE> (optional)

Measures the magnetic field strength using the optional magnetic field probe PR 26M.

"Specifications of magnetic field probe PR 26M"

Items	Specifications
Frequency range	10 MHz to 3 GHz
Space resolution (-6dB)	approx.0.25 mm (Depending on objects)
Dimensions	Outside: $12 \varphi \times 135 \mathrm{~mm}$ probe tip: $2 \mathrm{~mm}(\mathrm{~W}) \times 1 \mathrm{~mm}(\mathrm{~T})$
Connector	160 to $203 \mathrm{~dB} \mu \mathrm{~A} / \mathrm{m}$
Reference level setting range (maximum)	110 to $153 \mathrm{~dB} \mu \mathrm{~A} / \mathrm{m}$
Reference level setting range (except for the minimum value in screen shift)	approx. $\pm 1 \mathrm{~dB}$ Measurement error
(Probe simple substance)	

The tip of the optional magnetic field probe
PR 26 M is made of glass-ceramic board.
Take care when handling the probe even
though the strength of the glass-ceramic
board is sufficiently ensured under normal
operation.
(Refer to the operating manual for PR 26M for details.)

- Registration of the probe ID

Magnetic field strength measurement cannot be used without entering the "Probe ID" attached to the optional magnetic field probe, PR 26M. Once you have entered it, you don't need to enter it again.

When you press MEAS and F6 in that order, "Input PROBE ID" will appear in the measured
value display area on the screen. Then, input the 14-digit "Probe ID" with the numeric keypads.

Press
F4 (ENTER) to confirm it. Press
F5 (CLEAR) to delete the entire value and allow you to input one from the beginning. Press F6 (BACK SPACE) to delete the last input figure.

Press
F3 to cancel the probe ID input display.

- Mode selection and measurement

Use F1 (PROBE) to select a probe, PR 26M or USER. As soon as the probe is entered, the measurement is taken.

* It is each shown on MEAS area of LCD as "M/F PR 26M" or "M/F USER".
* "USER" is an original calibration table the user creates.
(Refer to "23.1 Command description" for details.)

Unit of amplitude axis are changing to $[\mathrm{dB} \mu \mathrm{A} / \mathrm{m}]$

* A trace is not displayed for frequencies outside those supported by the probe.

20. Screen Control <DSPL>

Press DSPL to switch over to the function screen shown below:

20.1 Adjusting the contrast

Use $\square \rightarrow$ to adjust the contrast.

20.2 Switching ON and OFF the LCD backlight

Each time F2 is pressed, the LCD backlight is alternately switched to ON or OFF.

20.3 Adjusting the brightness of the LCD backlight

Use $\mathrm{F} \mathbf{} \rightarrow$ to set the brightness.

20.4 Inverting the display

Press F4 to invert the screen display. Press F4 again to return it to the previous state.

20.5 Enabling or disabling the beep

Pressing F5 allows you to disable the beep that sounds when you operate a key or the encoder.
Press F5 again to return it to the previous state.

* If the voltage of a battery becomes low at the time of battery operation, it will be displayed on a screen as "Low Batt", and a buzzer will sound (it sounds, even if it is set up so that a buzzer may not sound), and a power supply will be shut off within several minutes.

21. Printing $<$ PRINT $>$ (optional)

When using the optional printer, connect the RS-232C cable as shown in the figure below.

21.1 Hard copy of the screen

When you press the PRINT with the printer (optional) connected to the unit, it is set to the HOLD state and starts printing. It remains in the HOLD state after the printing is finished. It stops printing if you press the PRINT again during printing.
Since the printer operates with power supply from either the AC adapter or dry batteries, you can easily produce a hard copy of measured data even when outdoors where no AC power supply is available. When battery-powered, the printer operates for approximately 30 minutes (continuous use), allowing you to produce about 80 hard copies of the screen image.

22. Data Output <RS232C>

Press RS232C to switch over to the function screen shown below:

*Refer to "23. RS-232C" for "How to connect" and "RS-232C specifications"

* The trace currently displayed on the screen is transmitted when "CURR" is selected.

22.1 Selecting the trace to transfer

Use $\begin{aligned} & \text { F1 }\end{aligned} \rightarrow$ to select a trace.
CURR $\longleftrightarrow 00 \longleftrightarrow 01 \longleftrightarrow 02 \longleftrightarrow 03 \longleftrightarrow \cdots \longleftrightarrow 98 \longleftrightarrow 99$
An asterisk $()$ appears when there is a saved trace at the selected number as well as
"SAVE/LOAD".

22.2 Selecting the communication speed (baud rate)

Use $\mathrm{F} 2 \rightarrow$ to select a baud rate.
$2400 \longleftrightarrow 4800 \longleftrightarrow 9600 \longleftrightarrow 19200 \longleftrightarrow 38400$

22.3 Transfer the data

Press F3 to start the transfer.
The data are transmitted as ASCII cord character strings.

- Contents of data

Character strings	Description	Example
PARAM	This means that the data from the next line are "setting parameters".	PARAM
CF **	Center frequency \quad Refer to 1	CF 2.5140G
SP **	Frequency span \quad Refer to 2	SP 20M
RF**	Reference level \quad Refer to 3	RF 10dBm
ST ** \#\#	Sweep time and detection mode \quad Refer to 4	ST 30ms SMP
RB**	Resolution bandwidth Refer to 5	RB 300k
VB **	Video bandwidth Refer to 6	VB 1M
SC**	Display scale $\quad(* *=10 \mathrm{~dB} / \mathrm{d}$ or $2 \mathrm{~dB} / \mathrm{d})$	SC 10dB/d
TRACE	This means that the data from the next line are "trace data".	TRACE
$* *, * *, \cdots$	These are trace data. Ten two-digit hexadecimal characters separated by commas make a line, and there are 26 lines (251data) of data in total. For Trace 1001 data transfer, there are 101 lines (1001 data) of data in total.	$24,20,1 \mathrm{f}, 1 \mathrm{f}, 1 \mathrm{l}, \cdots$ 23

*"CR(0D[HEX])+LF(0A[HEX])" is added to the tail of every data.
1: Center frequency
2650: CF $* * \quad[* *=0.0 \mathrm{M}, 0.1 \mathrm{M}$ to 999.9 M (0.1 step), 0.0001 G to $3.3 \mathrm{G}(0.0001$ step $)]$
2658: CF $* * \quad[* *=0.0 \mathrm{M}, 0.1 \mathrm{M}$ to 999.9 M (0.1 step), 0.0001 G to $8.5 \mathrm{G}(0.0001$ step $)]$

2: Frequency span
2650: SP ** [$* *=$ ZERO, $200 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{M}, 20 \mathrm{M}, 50 \mathrm{M}, 100 \mathrm{M}, 200 \mathrm{M}, 500 \mathrm{M}, 1 \mathrm{G}, 2 \mathrm{G}$, FULL]
2658: SP $* *[* *=$ ZERO, $200 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{M}, 20 \mathrm{M}, 50 \mathrm{M}, 100 \mathrm{M}, 200 \mathrm{M}, 500 \mathrm{M}, 1 \mathrm{G}, 2 \mathrm{G}, 5 \mathrm{G}$ FULL]

3: Reference level
RF ** $\quad[* *=-60$ to $10 \mathrm{dBm}, 47$ to $117 \mathrm{~dB} \mu \mathrm{~V},-13$ to $57 \mathrm{dBmV},-33$ to -3 dBv , 72 to $149 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}, 89$ to $203 \mathrm{~dB} \mu \mathrm{~A} / \mathrm{m}$ (all 1step)]
4: Sweep time and Detection mode
ST $* * \# \# \quad[* *=10 \mathrm{~ms}, 30 \mathrm{~ms}, 0.1 \mathrm{~s}, 0.3 \mathrm{~s}, 1 \mathrm{~s}, 3 \mathrm{~s}, 10 \mathrm{~s}, 30 \mathrm{~s}]$
[\#\#=POS, NEG, SMP]

5: Resolution bandwidth
RB ** $\quad[* *=3 \mathrm{k}, 10 \mathrm{k}, 30 \mathrm{k}, 100 \mathrm{k}, 300 \mathrm{k}, 1 \mathrm{M}, 3 \mathrm{M}]$

6: Video bandwidth
$\mathrm{VB} * * \quad[* *=100,300,1 \mathrm{k}, 3 \mathrm{k}, 10 \mathrm{k}, 30 \mathrm{k}, 100 \mathrm{k}, 300 \mathrm{k}, 1 \mathrm{M}]$

23. RS-232C Interface

23.1 RS-232C specifications

-Transfer rate : 2400/4800/9600/19200/38400bps
-Date bit length : 8bit
-Stop bit : 1bit
-Parity check : none

23.2 How to connect

When using the RS-232C interface, connect the RS-232C interface cable as shown in the figure below.

* RS-232C interface cable specifications . . Cable length: approx. 1.5 m

Connector: D-sub 9pin male / D-sub 9pin female
Wiring: straight

* Refer to "22. Data Output" about changing baud rate.

COM PORT (D-sub 9pin, male)
*Use the conversion connector, in the case that is D-sub 25pin (male)

23.3 Command description

* "CR(0D[HEX])+ LF(0A[HEX])" is added to the tail of every command. When you send a command from your PC, 2650/2658 returns a response. Responses include "OK" + CR + LF, "ERR" + CR +LF and "(response to command)" $+\mathrm{CR}+\mathrm{LF}$.
* By inputting "?" instead of "**" for each command, the current setting parameters are returned. Except for "....Request" command and command for inputting corrected data.

1) Set the center frequency

Command: FREQ*******
$(* * * * * * *=$ Refer to [23.4 Input the frequency])
2) Request the set marker

Command: FREQSETMKR
*The center frequency is set according to the frequency of current marker position.
3) Set the span

2650: Command: SPAN * ***
$(* * * *=\mathrm{ZERO}, 200 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{M}, 20 \mathrm{M}, 50 \mathrm{M}, 100 \mathrm{M}$,
500M, 1G, 2G, FULL[unit: Hz])
2658: Command: SPAN $* * * *$
$(* * * *=Z E R O, 200 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{M}, 20 \mathrm{M}, 50 \mathrm{M}, 100 \mathrm{M}$,
500M, 1G, 2G, 5G, FULL[unit: Hz])
4) Set the reference level

Command: REF***
$(* * *=-60$ to $10[1$ step, unit: dBm$])$
5) Set the reference unit

Command: UNIT****
$(* * * *=\mathrm{DBM}, \mathrm{DBVU}, \mathrm{DBMV}, \mathrm{DBV})$
6) Set the RBW

Command: $\mathrm{RBW} * * * *$
*For units other than dBm , use the conversion formulas in "9.3 Refference level setting range for each unit" to convert them into dBm before inputting the value.

Command	Unit
DBM	dBm
DBUV	$\mathrm{dB} \mu \mathrm{V}$
DBMV	dBmV
DBV	dBV

$(* * * *=3 \mathrm{~K}, 10 \mathrm{~K}, 30 \mathrm{~K}, 100 \mathrm{~K}, 300 \mathrm{~K}, 1 \mathrm{M}, 3 \mathrm{M}$, AUTO, ALL[unit: Hz])
7) Set the VBW

Command: VBW****
$(* * * *=100,1 \mathrm{~K}, 3 \mathrm{~K}, 10 \mathrm{~K}, 30 \mathrm{~K}, 100 \mathrm{~K}, 300 \mathrm{~K}, 1 \mathrm{M}$, AUTO, ALL[unit: Hz])
8) Start/Stop the measuring function

Command: MEAS***
$(* * *=\mathrm{CP}, \mathrm{ACP}, \mathrm{OBW}$,
EF, MF, OFF)
9) Request the result of measuring function

Command: MEASRES
*Example of the return data

Command	Measuring function
CP	Channel power measurement
ACP	Adjacent channel leakage power measurement
OBW	Occupied frequency bandwidth measurement
EF	Electric field strangth measurement
MF	Magnetic field strangth measurement
OFF	OFF

Case of channel power measurement \cdots POW: -25.5 dBm
Case of adjacent channel power measurement $\cdots \mathrm{L}:-44.7 \mathrm{dBc} \mathrm{U}:-48.3 \mathrm{dBc}$
Case of occupied bandwidth measurement \cdots C: 1.45 G W: 20.00 k
10) Set the mode of channel power measurement

Command: CPMODE***** $(* * * * *=$ TOTAL. BAND $)$

Command	Mode
TOTAL	Measure the power of whole range on the screen
BAND	Measure the power within zone set

11) Set the zone center frequency of channel power measurement

Command: CPCNTR $* * * * * * *$
$(* * * * * * *=$ Refer to [23.4 Input the frequency])
12) Set the zone width of channel power measurement

Command: CPWIDTH $* * * * * * *$
$(* * * * * * *=$ Refer to [23.4 Input the frequency])
13) Set the mode of adjacent channel power mesurement

Command: ACPMODE***** $(* * * * *=$ TOTAL, REF, PEAK $)$

Command	Mode
TOTAL	TOTAL(total power method)
BAND	BAND(in-band method)
PEAK	PEAK(reference level method)

14) Set the band offset of adjacent channel power mesurement

Command: ACPOFS $* * * * * * *$
$(* * * * * * *=$ Refer to [23.4 Input the frequency])
15) Set the bandwidth of adjacent channel power mesurement

Command: ACPCHBW $* * * * * * *$
$(* * * * * * *=$ Refer to [23.4 Input the frequency])
16) Set the reference band center frequency of adjacent channel power mesurement

Command: ACPREF*******
$(* * * * * * *=$ Refer to [23.4 Input the frequency])
17) Set the reference bandwidth of adjacent channel power measurement

Command: ACPREFBW $* * * * * * *$
$(* * * * * * *=$ Refer to [23.4 Input the frequency])
18) Set the mode of occupied bandwidth measurement

Command: OBWMODE** $(* *=\mathrm{N} \%, \mathrm{DB})$
19) Set the $\mathbf{N} \%$ ratio of occupied bandwidth mesurement

Command	Mode
$\mathrm{N} \%$	$\mathrm{~N} \%$ POWER mode
DB	XdB DOWN mode

Command: OBWRATIO***
($* * *=80.0$ to 99.9 [0.1step, unit: $\%$])
20) Set the XdB down of occupied bandwidth mesurement

Command: OBWDB***
$(* * *=0.1$ to $40.0[0.1$ step, unit: dB$])$
21) Set the antenna of electric field strength measurement

Command: EFANT****
$(* * * *=\mathrm{AN} 301, \mathrm{AN} 302, \mathrm{AN} 303, \mathrm{AN} 304, \mathrm{AN} 305$,
AN306,USER)

Command	Antenna
AN301	Setting date for AN 301
AN302	Setting date for AN 302
AN303	Setting date for AN 303
AN304	Setting date for AN 304
AN305	Setting data for AN 305
AN306	Setting data for AN 306
USER	Setting date for user's original antenna

22) Transfer the user-compensation data of electric field strength measurement

Command: EFUSER***
Example of the compensation data: $* * *=2.25 \mathrm{G}: 2.08 \mathrm{DBI}, \cdots 2.65 \mathrm{G}: 3.5 \mathrm{DBI}$
*If the compensation coefficient is -0.3 dBi at 2.5 GHz , the compensation data is " $2.5 \mathrm{G}:-0.3 \mathrm{DBI}$ "
Set apart by "," between data and input from lower frequency. 10data are available.
23) Set the probe of magnetic field strength measurement

Command: MFPROBE $* * * * *$

Command	Probe
PR26M	Setting data for PR 26M
USER	Setting data for user's original probe

24) Transfer the user-compensation date for magnetic field strength measurement

Command: MFUSER***
Example of the compensation data: $* * *=10 \mathrm{M}: 86.7 \mathrm{DB}, 100 \mathrm{M}: 69.2 \mathrm{DB}, \cdots 3 \mathrm{G}: 40 \mathrm{~dB}$
*If the compensation coefficient is 86.7 dB at 10 MHz , the compensation data is " $10 \mathrm{M}: 86.7 \mathrm{DB}$ "
Set apart by "," between data and input from lower frequency. 10data are available.

25) Start/Stop Calculation

Command: CALC***
$(* * *=\mathrm{OFF}, \mathrm{MAX}, \mathrm{MIN}, \mathrm{AVE}, \mathrm{OVR})$
26) Set the number of MAX HOLD

Command: MAXNO * * * **

Command	Calculation
OFF	OFF
MAX	MAX HOLD
MIN	MIN HOLD
AVE	AVERAGE
OVR	OVER WRITE

$(* * * *=2,4,8,16,32,64,128,256,512,1024,0) \quad *$ Command: $0=$ unlimited
27) Set the number of MIN HOLD

Command: MINNO****
$(* * * *=2,4,8,16,32,64,128,256,512,1024,0) \quad *$ Command: $0=$ unlimited

28) Set the number of AVERAGE

Command: AVENO***
$(* * *=2,4,8,16,32,64,128,256)$
29) Set the display scale of amplitude axis

Command: SCALE** $\quad(* *=2,10)$

Command	Display scale
2	$2 \mathrm{~dB} / \mathrm{div}$
10	$10 \mathrm{~dB} / \mathrm{div}$

30) Set the sweep time

Command: SWEEP****
$(* * * *=10 \mathrm{M}, 30 \mathrm{M}, 0.1 \mathrm{~S}, 0.3 \mathrm{~S}, 1 \mathrm{~S}, 3 \mathrm{~S}, 10 \mathrm{~S}, 30 \mathrm{~S}, \mathrm{AUTO}, \mathrm{ALL})$

Command	Sweep time
10 M	10 ms
30 M	30 ms
0.1 S	0.1 s
0.3 S	0.3 s
1 S	1 s

Command	Sweep time
3 S	3 s
10 S	10 s
30 S	30 s
AUTO	AUTO
ALL	ALLAUTO

31) Set the detection mode

Command: DET***
$(* * *=$ POS, NEG, SMP)
32) Request the AUTOTUNE

Command	Detection mode
POS	Positive peak mode
NEG	Negative peak mode
SMP	Sample mode

Command: AUTO
*Returns the response after tuning.
33) Request the action

Command: HOLD/RUN
34) Request the marker information

Command: MKRRES
*Example of returned data: $1.42 \mathrm{G}-15 \mathrm{dBm}$
35) Set the marker mode

Command: MKR*****
$(* * *=$ NORM, DELTA $)$

36) Set the marker position

Command: NORMMKR*******
$(* * * * * * *=$ Refer to [23.4 Input the frequency])

Command: PEAK * * * *
(****=NORM, ZONE)
38) Request the peak search

Command: PKSEARCH**
$(* *=01,02,03,04,05,06,07,08,09,10,11)$
39) Set the zone center frequency of peak search

Command: PKCNTR $* * * * * * *$
$(* * * * * * *=$ Refer to [23.4 Input the frequency])

37) Set the peak search mode

Command	Marker mode
NORM,	Normal marker
DELTA	Delta marker

Command	Peak search mode
NORM	Normal peak search
ZONE	Zone peak search

Command	Position to where the marker moves
01	Position of the maximum peak on the screen
02	Position of the 2nd highest peak on the screen
\ldots	\ldots
11	Position of the 11th highest peak on the screen

40) Set the zone width of peak search

Command: PKWIDTH $* * * * * * *$
$(* * * * * * *=$ Refer to [23.4 Input the frequency])
41) Set the unit of marker

Command: CONV*****
$(* * * * *=\mathrm{DBM}, \mathrm{M}, \mathrm{DBV}, \mathrm{V}, \mathrm{DBUVM}, \mathrm{VM})$
42) Request the transfer of hard copy

Command: PRT

Command	Unit of marker
DBM	dBm
W	W
DBV	dBV
V	V
DBUVM	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$
VM	V / m

*When transferring the returned data to optional printer, hard copy is performed.
43) Request to transfer trace

Command: SRS****
$(* * * *=\mathrm{CURR}, 00$ to 99$)$
44) Request to transfer 1001 date of trace

Command: SRSF

Command	Trace that is transferd
CURR	Trace of Current
00	Trace of save data 1
\ldots	\ldots
99	Trace of save data 100

(Refer to "22.3 Transfer the data" about returned data.)
45) Request the preset

Command: PRESET
46) Set the remote control

Command: REMOTE***
$(* * *=\mathrm{ON}, \mathrm{OFF})$

* When remote control is ON, "REMOTE" is displayed in the operating information display area on the LCD screen.

Command	Remote control
ON	Any operation from the keys or the encoder of the main body will not be accepted. Control the unit with RS-232C commands.
OFF	The operation from the keys or the encoder of the main body and RS-232C commands will be accepted.

(Refer to "4. Description Of Screen"for details)
47) Single sweep

Command: CAPT

* It sweeps only once and will be in a HOLD state.

48) Setting of the offset level

Command: OFFSET $* * * *$
$(* * * *=-50.0$ to 50.0 [0.1step, unit:dB])
49) Setting the input impedance

Command: IMP**
($* *=50,75$)

Command	Offset level
50	Offset level is set to 0 dB.
75	Offset level is set to 5.7 dB.

* When selecting of " 75Ω ", please attach the $50 \Omega / 75 \Omega$ coaxial impedance matching pad to an input connector.

50) Clearing of saved trace-data and parameter

Command: MCLR****

23.4 Input the frequency

Command	Clearing data
WALL	All of saved trace-data
SALL	All of saved-parameter
W00	Trace-data of save-No. 00
\ldots	\ldots
W99	Trace-data of save-No. 99
S00	Parameter of save-No. 00
\ldots	\ldots
S99	Parameter of save-No. 99

For the items written $(* * * * * * *)=$ Refer to [23.4 Input the frequency]) in [23.3 Command description] above, enter a frequency as follows.
$* * * * * * *=0.0 \mathrm{k}$ to $999.9 \mathrm{k}[0.1$ step, unit: Hz$]$ 0.0 M to 999.9 M [0.1step, unit: Hz]

2650: $\quad 0.0000 \mathrm{G}$ to $3.3 \mathrm{G}[0.0001$ step, unit: Hz$]$
2658: 0.0000 G to $8.5 \mathrm{G}[0.0001$ step, unit: Hz$]$

* However, the offset frequency and zone width can be input only in the range decided by the center frequency and frequency span. The value out of the range becomes error.
* Values of the offset frequency and the zone width will change as you alter the frequency span.

23.5 Writing of original compensation data

On the case of electric field strength measurement used the antenna prepared by the visitor, or, on the case of magnetic field strength measurement used the magnetic field probe prepared by the visitor, it is necessary to write the data of the antenna gain or the magnetic probe field compensation coefficient to 2650/2658 main unit. Please write the antenna gain or the magnetic probe field compensation coefficient according to the following description. There are two kinds of methods, "method 1: use PC software AK 2650 (optinal)" and "method 2: use communication program which is prepared by user".

1) Preparation things

- RS-232C interface cable
- Windows ${ }^{\circledR}$ PC (with RS-232C interface) * It is not writable with $2650 / 2658$ main unit only.
- PC software AK 2650 (case of "Method 1 of writing data")

2) Write-in data

As example, the compensation data (antenna gain) of antenna AN 305 and the compensation data (compensation coefficient) of magnetic field probe PR 26 M are shown below.

- Compensation data (antenna gain) of antenna AN 305.

Frequency	300 MHz	350 MHz	400 MHz	450 MHz	500 MHz
Antenna gain	0.0 dBi	1.0 dBi	1.4 dBi	1.4 dBi	0.0 dBi

- Compensation data (compensation coefficient) of magnetic field probe PR 26M.

Frequency	10 MHz	100 MHz	1 GHz	2 GHz	3 GHz
Compensation coefficient	86.7 dB	69.2 dB	50.7 dB	44.9 dB	40.1 dB

* Here, although the number of data is five points, it is possible to write even the data of maximum of ten points. Data cannot be written in 0 Hz .

3) Method 1 of writing data

The method which used the optional PC software AK 2650.

* Please use AK 2650 of the version more than 1.03b.

The software can be updated. Please contact to our company for details.

1. Write the antenna gain to text file.

Please create a new text file by new creation of a personal computer, and open by the text editor.

- Format

"Frequency":"Antenna gain","Frequency":"Antenna gain","Frequency","Antenna gain", ...
Example) case of AN 305
300M:0.0DB,350M:1.0DB,400M:1.4DB,450M:1.4DB,500M:0.0DB

* Please write unit with a capital letter. Moreover, Frequency can also use G (GHz).

2. It writes in by PC software AK 2650.

Connect the personal computer to 2650/2658 by RS-232C interface cable. Turn on the power of 2650/2658. Start the PC software AK 2650. Please set the same baud rate of 2650/2658 and AK 2650. (Refer to "2650/2658 operating manual" for details)

On the case of electric field strength measurement, please choose [File] \rightarrow [Write E/F User Data], on the case of magnetic field strength measurement, please choose [File] \rightarrow [Write M/F User Data], from the upper menu of software, and select the text file which made some time ago. Then, data is wrriten.

4) Method 2 of writing data

It is method of writing in which does not use AK 2650. A user needs to prepare communication program.

1. Prepare the RS-232C communication software.

Connect the personal computer to 2650/2658 by RS-232C interface cable. Turn on the power of 2650/2658. Start the RS-232C communication software. Please set the same baud rate of 2650/2658 and software, and unite the setting of communication. (Refer to "22. Data Output" for details.)

2. Write the data

Please transmit data of the following format to 2650/2658 from RS-232C communication software. - Format

Case of compensation data of electric field strength measurement.
EFUSER"Frequency":"Antenna gain","Frequency","Antenna gain", ...
Case of compensation data of magnetic field strength measurement.
MFUSER"Frequency":"Compensation coefficient","Frequency":"Compensation coefficient", ...

Example) case of PR 26 M
MFUSER10M:86.7DB,100M:69.2DB,1G:50.7DB,2G:44.9DB,3G:40.1DB

* Please write unit with a capital letter.

3. After writing is completed correctly, "OK" is returned from 2650/2658.

5) How to use

1. Please set the measuring function of $2650 / 2658$ to electric field strength measurement mode or magnetic field strength measurement mode.
On the case of electric field strength measurement, please select [MEAS] \rightarrow [E/F ANT],
on the case of magnetic field strength measurement, please select [MEAS] \rightarrow [M/F PROBE],
Please push [F1] and display [USER] on the upper of [F1].
Now, electric field strength measurement or magnetic field strength measurement by the written compensation data can be performed.

* When the power supply of 2650/2658 is turned off at once and turned on again it returns from electric field strength measurement mode or magnetic field strength measurement mode to the usual measurement mode. Then if it goes into electric field measurement mode or magnetic field strength measurement mode once again, it can measure in the same state.

6) About the antenna gain

In this contents, the antenna gain is meaning absolute gain [dBi].
When antenna gain is relative gain, it can change into absolute gain by adding +2.15 dB .

- Absolute gain $[\mathrm{dBi}]=$ Relative gain $[\mathrm{dBd}]+2.15 \mathrm{~dB}$

As reference, the conversion formula to electric field strength is using the following.

$$
\cdot \mathrm{E}=\sqrt{ }\left(480 \pi^{2} \times \mathrm{Pa} \div\left(\mathrm{Ga} \times \lambda^{2}\right)\right.
$$

E: Electric field strength [V/m]
Pa: Received electric power [W]
Ga: Antenna gain [times] $=10^{(\text {antenna gain }[d B i] \div 10)}$
λ : Wavelength $[\mathrm{m}]=\left(3 \times 10^{8}\right) \div$ frequency $[\mathrm{Hz}]$

23.6 Sample program

An example program to send following setting with RS-232C is shown below:
Setting: Center frequency 1 GHz

OPEN "COM1:N81N" AS \#1
PRINT \#1 "FREQ1G";
INPUT\#1 A\$
CLOSE \#1
‘FREQ SETTING
'"FREQ1G" OUTPUT
‘"OK" READ

24. PC Software (optional)

This is the software AK 2650 that controls $2650 / 2658$ by RS-232C. All setting can be performed from PC. Although the 251 points of trace data is displayed on horizontal axis in the screen of the 2650/2658,1001 points of trace data are taken per sweep. When this software is used, all of these 1001 points dataare transformed to a PC and trace is displayed at high resolution.

Corresponding OS

Hardware Requirements

Computer that is able to act normally Windows ${ }^{\circledR}$, and able to use the COM port and CD-ROM drive.
Screen size 1024×768 or more computers.
Operating system
Windows ${ }^{\circledR} 95 / 98 / 2000 / \mathrm{Me} / \mathrm{NT} 4.0$ * XP

Communication method

Bidirectional communication by RS-232C.

Installation procedure

1. Start windows ${ }^{\circledR}$.
2. Insert the AK 2650 software CD into the CD-ROM drive.

The setup will start automatically and the initial screen will appear.
3. Follow the instructions on the screen.

* If the setup does not start,

1. Double-click on the My Computer icon.
2. Double-click on the CD-ROM icon.
3. Double-click on "setup.exe".
4. Follow the instructions on the screen.

Refer to the "README" in the AK 2650 for details.

* The software can be updated. Please contact to our company for details.

25. Basis Performance Test (2650 only)

To keep the quality of the unit, regular performance testing is recommended. This section describes a method and specification of basic performance testing. If a problem is found in the results of basic performance testing, or formal testing is needed, please contact the dealership where you purchased the product, or contact us.
[Connection diagram]

25.1 Frequency characteristics

Adjust the output level of the spectrum analyzer calibration unit (thereafter, "calibration unit") so that the displayed power value is -15 dBm at each frequency for this unit, and measure the absolute value with a receiver for calibration (microwave power meter, etc.).

Setting of 2650				Specifications
Center frequency	Frequency span	RBW		Measurement value

* RBW switching error is included at RBW other than 3 MHz .
- Setting of 2650

Reference level : -15 dBm
VBW : 1 MHz
Sweep time : 1s
Detection mode : SMPL
Display scale : 2dB/div

- Setting of calibration unit

Frequency : Same as a center frequency of 2650.

Output power : Adjust the power indication of 2650 to -15 dBm .

25.2 Accuracy of reference level

Adjust the output level of the calibration unit so that the displayed value of this unit is the 0th div from the top, and calibrate the absolute value with the receiver for calibration (microwave power meter, etc.).

Setting of 2650	Specifications	Measurement value	Judgment
Reference level	within $\pm 1.4 \mathrm{~dB} \pm 1 \mathrm{dot}$		
+10 dBm	within $\pm 1.4 \mathrm{~dB} \pm 1 \mathrm{dot}$		
0 dBm	within $\pm 1.4 \mathrm{~dB} \pm 1 \mathrm{dot}$		
-10 dBm	within $\pm 0.8 \mathrm{~dB} \pm 1 \mathrm{dot}$		
-15 dBm	within $\pm 1.4 \mathrm{~dB} \pm 1 \mathrm{dot}$		
-20 dBm	within $\pm 1.4 \mathrm{~dB} \pm 1 \mathrm{dot}$		
-30 dBm	within $\pm 1.4 \mathrm{~dB} \pm 1$ dot		
-40 dBm			

* Input attenuator switching error is included at the reference level other than -15 dBm .

- Setting of 2650		
Center frequency	$:$	100 MHz
Frequency span	$:$	10 MHz
RBW	$:$	3 MHz
VBW	$:$	1 MHz
Sweep time	$:$	1 s
Detection mode	$:$	SMPL
Display scale	$:$	$2 \mathrm{~dB} /$ div

- Setting of calibration unit

Frequency : 100 MHz
Output power : Adjust it so that the indicated value of 2650 is at the 0 th div from the top.

25.3 The display accuracy of the center frequency

Measure the frequency with the peak search function of 2650.

Setting of 2650			Specifications	Measurement value	Judgment
Center frequency	Frequency span	RBW			
100 MHz	200 kHz	3 kHz	within $\pm 130 \mathrm{kHz} \pm 1$ dot		
100 MHz	10 MHz	30 kHz	within $\pm 130 \mathrm{kHz} \pm 1$ dot		
100 MHz	20 MHz	100 kHz	within $\pm 800 \mathrm{kHz} \pm 1$ dot		
100 MHz	200 MHz	100 kHz	within $\pm 800 \mathrm{kHz} \pm 1$ dot		
1 GHz	500 MHz	100 kHz	within $\pm 800 \mathrm{kHz} \pm 1$ dot		
1 GHz	2 GHz	3 MHz	within $\pm 800 \mathrm{kHz} \pm 1$ dot		
1.65 GHz	FULL $(3.3 \mathrm{GHz})$	3 MHz	within $\pm 800 \mathrm{kHz} \pm 1$ dot		

Setting of 2650		
Reference level	$:$	-15 dBm
VBW	$:$	AUTO
Sweep time	$:$	1 s
Detection mode	$:$	SMPL
Display scale	$:$	$10 \mathrm{~dB} /$ div

- Setting of calibration unit

Frequency : \quad| Same as a center frequency of |
| :--- |
| |
| Output power $: \quad$ |$\quad-150 \mathrm{dBm}$

* However, calibrate the signal generator
in advance.

25.4 The display accuracy of the frequency span

Adjust the frequency of the calibration equipment so that the peaks are at the positions of f_{1} and f_{9}, and measure the frequencies of f_{1} and f_{9}. Calculate from f_{1} and f_{9} the display accuracy of the frequency span.

Setting of 2650				Specifications	f_{1} Measurement value	Measurement value	$\left.\mathrm{f}_{9}-\mathrm{f}_{1}\right)$ \times 1.25
Frequency span	Center Frequency	RBW					
200 kHz	100 MHz	3 kHz	within $\pm 26 \mathrm{kHz} \pm 1$ dot				
10 MHz	100 MHz	100 kHz	within $\pm 320 \mathrm{kHz} \pm 1$ dot				
20 MHz	100 MHz	300 kHz	within $\pm 0.8 \mathrm{NHz} \pm 1$ dot				
200 MHz	100 MHz	3 MHz	within $\pm 6.2 \mathrm{MHz} \pm 1$ dot				
500 MHz	1 GHz	3 MHz	within $\pm 15.2 \mathrm{MHz} \pm 1$ dot				
2 GHz	1 GHz	3 MHz	within $\pm 60.2 \mathrm{MHz} \pm 1$ dot				
FULL 3.3 GHz$)$	1.65 GHz	3 MHz	within $\pm 99.2 \mathrm{MHz} \pm 1$ dot				

* $f_{1}: 1$ st div from the left on the trace screen $f_{9}: 9$ th div from the left on the trace screen

Setting of 2650		
Reference level	$:$	-15 dBm
VBW	$:$	AUTO
Sweep time	$:$	1 s
Detection mode	$:$	SMPL
Display scale	$:$	$2 \mathrm{~dB} /$ div

- Setting of calibration unit
Frequency : Adjust it to the positions of f_{1} and f_{9}.
Output power : -15 dBm

Display scale : 2dB/div

25.5 Linearity of the amplitude axis

Adjust the level of the calibration unit so that the peak is at the top of the amplitude axis (0th div), and regard the point set at that time as the reference. Gradually lower the output, starting from the reference, and measure the amplitude value of 2650 .

Setting of 2650	Output of calibration unit	Specifications	Measurement value	Judgment
Display scales				
10dB/div	$\mathbf{X d B m}$ (adjust it to the 0th div)	Reference(-15dBm)	(-15dBm)	
	$\mathbf{X}-10 \mathrm{dBm}$	Within $-25 \mathrm{dBm} \pm 0.8 \mathrm{~dB} \pm 1 \mathrm{dot}$		
	$\mathbf{X}-70 \mathrm{dBm}$	Within -85dBm $\pm 1.6 \mathrm{~dB} \pm 1 \mathrm{dot}$		
$2 \mathrm{~dB} / \mathrm{div}$	$\mathbf{X d B m}$ (adjust it to the 0th div)	Reference(-15dBm)	(-15dBm)	
	X-2dB	Within $-17 \mathrm{dBm} \pm 0.2 \mathrm{~dB} \pm 1 \mathrm{dot}$		
	X-10dB	Within $-25 \mathrm{dBm} \pm 0.8 \mathrm{~dB} \pm 1 \mathrm{dot}$		

- Setting of 2650

Center frequency : 100 MHz
Reference level : -15 dBm
Frequency span : 10 MHZ
RBW : 3 MHz
VBW : 1 MHz
Sweep time : 1s
Detection mode SMPL

- Setting of calibration unit

Frequency : 100 MHz

BK PRECISTM

Limited Two-Year Warranty

B\&K Precision Corp. warrants to the original purchaser that its product and the component parts thereof, will be free from defects in workmanship and materials for a period of two years from the data of purchase.

B\&K Precision Corp. will, without charge, repair or replace, at its' option, defective product or component parts. Returned product must be accompanied by proof of the purchase date in the form a sales receipt.

To obtain warranty coverage in the U.S.A., this product must be registered by completing and mailing the enclosed warranty card to B\&K Precision Corp., 22820 Savi Ranch Parkway, Yorba Linda, CA 92887 within fifteen (15) days from proof of purchase.

Exclusions: This warranty does not apply in the event of misuse or abuse of the product or as a result of unauthorized alternations or repairs. It is void if the serial number is alternated, defaced or removed.

B\&K Precision Corp. shall not be liable for any consequential damages, including without limitation damages resulting from loss of use. Some states do not allow limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific rights and you may have other rights, which vary from state-tostate.

Model Number: \qquad Date Purchased: \qquad

Service Information

Warranty Service: Please return the product in the original packaging with proof of purchase to the below address. Clearly state in writing the performance problem and return any leads, connectors and accessories that you are using with the device.

Non-Warranty Service: Return the product in the original packaging to the below address. Clearly state in writing the performance problem and return any leads, connectors and accessories that you are using with the device. Customers not on open account must include payment in the form of a money order or credit card. For the most current repair charges contact the factory before shipping the product.

Return all merchandise to B\&K Precision Corp. with pre-paid shipping. The flat-rate repair charge includes return shipping to locations in North America. For overnight shipments and nonNorth America shipping fees contact B\&K Precision Corp..

B\&K Precision Corp. 22820 Savi Ranch Parkway
Yorba Linda, CA 92887
Email: service@bkprecision.com
Include with the instrument your complete return shipping address, contact name, phone number and description of problem.

