

PROGRAMMING MANUAL

Digital Storage Oscilloscope

MODEL: 2550 Series (2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559)

TABLE OF CONTENTS

Using Status Registers	
About these Commands & Queries	
How they are listed?	
How they are described?	
Command Notation	
Table of Commands & Queries	
Commands & Queries	1
Index	

Using Status Registers

A wide range of status registers allows the oscilloscope's internal processing status to be determined quickly at any time. These registers and the instrument's status reporting system and designed to comply with IEEE 488.2 recommendations. Following an overview, starting the page, each of the registers and their roles are described.

Related functions are grouped together in common status registers. Some, such as the Statu Byte Register (STB) or the Standard Event Status Register (ESR), are required by the IEE 488.2 Standard. Other registers are device-specific, and include the Command Error Register (CMR) and Execution Error Register (EXR). Those commands associated with IEEE 488. mandatory status registers are preceded by an asterisk <*>.

About these Commands & Queries

This section lists and describes the remote control commands and queries recognized by the instrument. All commands and queries can be executed in either local or remote state.

The description for each command or query, with syntax and other information, begins on a ner page. The name (header) is given in both long and short form at the top of the page, and the subject is indicated as a command or query or both. Queries perform actions such as obtaining information, and are recognized by the question mark (?) following the header.

followed by a presentation of the formal syntax, with the header given in Upper-and-Lowe Case characters and the short form derived from it in ALL UPPER-CASE characters. Whe applicable, the syntax of the query is given with the format of its response.

sd

Command Notation

The following notation is used in the commands:

- <> Angular brackets enclose words that are used as placeholders, of which there are two types: the header path and the data parameter of a command.
- := A colon followed by an equals sign separates a placeholder from the description of the type and range of values that may be used in a command instead of the placeholder.
- {} Braces enclose a list of choices, one of which one must be made.
- [] Square brackets enclose optional items.
- ... An ellipsis indicates that the items both to its left and right may be repeated a number of times.

As an example, consider the syntax notation for the command to set the vertical input sensitivi <channel>:VOLT_DIV <v_gain> <channel> := {C1, C2, C3, C4} <v_gain>: = 2 mV to 5 V

The first line shows the formal appearance of the command, with <channel> denoting the placeholder for the header path and $\langle v_gain \rangle$ the placeholder for the data parameter specifying the desired vertical gain value. The second line indicates that one of four channels must be chosen for the header path. And the third explains that the actual vertical gain can be set to an value between 2 mV and 5 V.

Table of Commands & Queries

Short Form	Long Form	Subsystem	What the Comman Query Does
ALST?	ALL_STATUS?	STATUS	Reads and clears the contents of all status registers.
ARM	ARM_ACQUISITION	ACQUISITION	Changes acquisition s from "stopped" to "single".
ATTN	ATTENUATION	ACQUISITION	Selects the vertical attenuation factor of the probe
ACAL	AUTO_CALIBRATE	MISCELLANEOUS	Enables or disables automatic calibration.
ASET	AUTO_SETUP	ACQUISITION	Adjusts vertical, time and trigger parameters
AUTTS	AUTO_TYPESET	ACQUISITION	Selects the display typ automatic setup.
AVGA	AVERAGE_ACQUIRE	ACQUISITION	Selects the average tir of average acquisition
BWL	BANDWIDTH_LIMIT	ACQUISITION	Enables/disables the bandwidth-limiting lo pass filter.
BUZZ	BUZZER	MISCELLANEOUS	Controls the built-in piezo-electric buzzer.
*CAL?	*CAL?	MISCELLANEOUS	Performs complete internal calibration of instrument.
CHDR	COMM_HEADER	COMMUNICATION	Controls formatting o query responses.
*CLS	*CLS	STATUS	Clears all status data registers.

CRST?	CURSOR_SET?	CURSOR	Allows positioning of
			one of eight cursors.
			Returns trace values
CRVA?	CURSOR_VALUE?	CURSOR	measured by specified
			cursors.
CRAU	CURSOR_AUTO	CURSOR	Changes the cursor m
			to auto mode.
COLIG	COL CANE		Saves specified wave
CSVS	CSV_SAVE	SAVE/RECALL	data of CSV format to
	<u> </u>		USB device.
COUN	COLINITED	FUNCTION	Enables or disables th
COUN	COUNTER	FUNCTION	cymometer to display
	+		the screen.
CVM	OVMOMETER	EUNOTION	Returns the current
CYMT	CYMOMETER	FUNCTION	cymometer value whi
	+		displaying on the scre
DATE	DATE	MICCELLANDOLIC	Changes the date/time
DATE		MISCELLANEOUS	the internal real-time
			clock. Clears the Device
DDR?	DDR?	STATUS	
DDK!	DDK!	STATUS	Dependent Register
	+		(DDR). Specifies math expres
DEF	DEFINE?	FUNCTION	for function evaluation
			Deletes files from ma
DELF	DELETE_FILE	MASS STORAGE	
			storage. Creates and deletes fi
DIR	DIRECTORY	MASS STORAGE	directories.
			Controls the interpola
DTJN	DOT_JOIN	DISPLAY	lines between data po
	+		Sets the Standard Eve
*ESE	*ESE	STATUS	Status Enable register
LOL	LOL	517105	(ESE).
			Reads, clears the Eve
*ESR?	*ESR?	STATUS	Status Register (ESR)
	+		Reads, clears the
			NEAUS, CIEAUS IDE

FILTS	FILT_SET	FUNCTION	Selects the type of filt and sets the limit valu filter.
FFTW	FFT_WINDOW	FUNCTION	Selects the window of FFT.
FFTZ	FFT_ZOOM	FUNCTION	Selects the zoom in/or times of FFT trace.
FFTS	FFT_SCALE	FUNCTION	Selects the vertical sca of FFT trace.
FFTF	FFT_FULLSCREEN	FUNCTION	Enables or disables to display the FFT trace screen.
GRDS	GRID_DISPLAY	DISPLAY	Selects the type of gri
GCSV	GET_CSV	WAVEFORMTRANS	Specifies waveform d of format to controller
HMAG	HOR_MAGNIFY	DISPLAY	Horizontally expands selected expansion tra
HPOS	HOR_POSITION	DISPLAY	Horizontally positions intensified zone's cen
HCSU	HARDCOPY_SETUP	HARD COPY	Configures the hard-c driver.
*IDN?	*IDN?	MISCELLANEOUS	For identification purposes.
INTS	INTENSITY	DISPLAY	Sets the grid or trace/t intensity level.
ILVD	INTERLEAVED	ACQUISITION	Enables/disables rand interleaved sampling (RIS).
INR?	INR?	STATUS	Reads, clears INternal state change Register (INR).
INVS	INVERT_SET	DISPLAY	Invert the trace or the math waveform of specified source.
LOCK	LOCK	MISCELLANEOUS	Lock keyboard
			Enables or disables to

			measure.
OFST	OFFSET	ACQUISITION	Allows output channe vertical offset adjustr
*OPC	*OPC	STATUS	Sets the OPC bit in th Event Status Register (ESR).
*OPT?	*OPT?	MISCELLANEOUS	Identifies oscilloscop options.
PACL	PARAMETER_CLR	CURSOR	Clears all current parameters in Custon Pass/Fail.
PACU	PARAMETER_CUSTO M	CURSOR	Controls parameters customizable qualifie
PAVA?	PARAMETER_VALU E?	CURSOR	Returns current parar mask test values.
PDET	PEAK_DETECT	ACQUISITION	Switches the peak de ON and OFF.
PERS	PERSIST	DISPLAY	Enables or disables the persistence display m
PESU	PERSIST_SETUP	DISPLAY	Selects display persis duration.
PNSU	PANEL_SETUP	SAVE/RECALL	Complements the *SAV/*RST comman
PFDS	PF_DISPLAY	FUNCTION	Enables or disables to display the test and th message options of pass/fail.
PFST	PF_SET	FUNCTION	Sets the X mask and mask.
PFSL	PF_SAVELOAD	SAVE/RECALL	Saves or recalls the created mask setting.
PFCT	PF_CONTROL	FUNCTION	Selects the "operate" "output" and the "sto output" which are the options of pass/fail.
			Creates the mask of t

RCPN	RECALL_PANEL	SAVE/RECALL	Recalls a front-panel from mass storage.
*RST	*RST	SAVE/RECALL	The *RST command initiates a device reset
REFS	REF_SET	FUNCTION	Sets the reference waveform and its opti
*SAV	*SAV	SAVE/RECALL	Stores current state in volatile internal memory
SCDP	SCREEN_DUMP	HARD COPY	Causes a screen dump controller.
SCSV	SCREEN_SAVE	DISPLAY	Controls the automati screen saver.
*SRE	*SRE	STATUS	Sets the Service Requ Enable register (SRE)
*STB?	*STB?	STATUS	Reads the contents of IEEE 488.
STOP	STOP	ACQUISITION	Immediately stops sig acquisition.
STO	STORE	WAVEFORMTRANS	Stores a trace in intern memory or mass stora
STPN	STORE_PANEL	SAVE/RECALL	Stores front-panel set mass storage.
STST	STORE_SETUP	WAVEFORMTRANS	Controls the way in w traces are stored.
SAST	SAMPLE_STATUS	ACQUISITION	Return the acquisition status of the scope
SARA	SAMPLE_RATE	ACQUISITION	Return the sample rate the scope
SANU	SAMPLE_NUM	ACQUISITION	Return the number of sampled points availa from last acquisition a the trigger position
SKEW	SKEW	ACQUISITION	Sets the skew of specific trace.
SET50	SETTO%50	FUNCTION	Sets the trigger level of trigger source to the c

			command.
TRCP	TRIG_COUPLING	ACQUISITION	Sets the coupling mod the specified trigger source.
TRDL	TRIG_DELAY	ACQUISITION	Sets the time at which trigger is to occur.
TRLV	TRIG_LEVEL	ACQUISITION	Adjusts the trigger let the specified trigger source.
TRMD	TRIG_MODE	ACQUISITION	the trigger mode.
TRSE	TRIG_SELECT	ACQUISITION	Selects the condition will trigger acquisition
TRSL	TRIG_SLOPE	ACQUISITION	Sets the trigger slope the specified trigger source.
UNIT	UNIT	ACQUISITION	Sets the unit of specif trace.
VPOS	VERT_POSITION	DISPLAY	Adjusts the vertical position of the FFT tr
VDIV	VOLT_DIV	ACQUISITION	Sets the vertical sensitivity.
VTCL	VERTICAL	ACQUISITION	Controls the vertical position of the slope trigger line.
WF	WAVEFORM	WAVEFORMTRANS	Gets the waveform fr the instrument.
WFSU	WAVEFORM_SETUP	WAVEFORMTRANS	Specifies amount of waveform data to go controller.
WAIT	WAIT	ACQUISITION	Prevents new analysis until current has been completed.
XYDS	XY_DISPLAY	DISPLAY	Enables or disables to display the XY forma

Commands & Queries

STATUS

ALL_STATUS?, ALST? Query

DESCRIPTION	The ALL_STATUS? Query reads and clears the contents of all status registers: STB, ESR, INR, DDR, CMR, EXR and URR except for the MAV bit (bit 6) of the STB register. For an interpretation of the contents of each register, refer to the appropriate status register.
	The ALL_STATUS? Query is useful in a complete overview of the state of the instrument.
QUERY SYNTAX	ALl_STatus?
RESPONSE FORMAT	AL1_STatus STB, <value>,ESR,<value>,INR,<value>,DDR,<value>,e>,CMR,<value>,EXR,<value>,URR,<value> <value> := 0 to 65535</value></value></value></value></value></value></value></value>
EXAMPLE	The following instruction reads the contents of all the status registers:
	Command message: ALST?

ACQUISITION ARM_ACQUISITION, ARM Command DESCRIPTION The ARM_ACQUISITION command enables the signal acquisition process by changing th acquisition state (trigger mode) from "stopped" "single". COMMAND SYNTAX ARM acquisition EXAMPLE The following command enables signal acquisition: Command message: ARM

RELATED COMMANDS

STOP, *TRG, TRIG_MODE, WAIT

ATTENUATION, ATTN Command /Query

DESCRIPTION

The ATTENUATION command selects the vertical attenuation factor of the probe. Values of 1, 5, 10, 50 100, 500, and 1000 may be specified.

The ATTENUATION? Query returns the attenuation factor of the specified channel.

COMMAND SYNTAX

<channel>: ATTeNuation <attenuation> <channel> := {C1, C2, C3, C4} <attenuation>: = {1, 5, 10, 50, 100, 500, 1000}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<channel>: ATTeNuation?

<channel>: ATTeNuation <attenuation>

The following command sets to 100 the attenuation factor of Channel 1:

Command message: C1:ATTN 100

MISCELLANEOUS

DESCRIPTION

AUTO_CALIBRATE, ACAL Command /Query

The AUTO_CALIBRATE command is used to enable or disable the quick calibration of the instrument.

The quick calibration may be disabled by issuing the command ACAL OFF. Whenever it is convenient, *CAL? Query may be issued to fully calibrate the oscilloscope.

The response to the AUTO_CALIBRATE? Query indicates whether quick -calibration is enable

The command is only used in the CFL series instrument.

Auto_CALibrate <state> <state> := {ON, OFF}

QUERY SYNTAX

RESPONSE FORMAT

COMMAND SYNTAX

Auto_CALibrate <state>

Auto CALibrate?

EXAMPLE

The following instruction disables quick-calibration

Command message: ACAL OFF

RELATED COMMANDS

*CAL?

AUTO_SETUP, ASET Command

DESCRIPTION

The AUTO_SETUP command attempts to identify the waveform type and automatically adjusts control to produce a usable display of the input signal.

COMMAND SYNTAX

EXAMPLE

AUTO_SETUP

The following command instructs the oscilloscope to perform an auto-setup:

Command message: ASET

RELATED COMMANDS

AUTTS

DESCRIPTION

AUTO_TYPESET, AUTTS Command /Query

The AUTO_TYPESET command selects the specified type of automatically adjusting which is used to display.

COMMAND SYNTAX

AUTO_TYPESET <type>

<type> := {SP,MP,RS,DRP,RC} SP means only one period to be displayed, MP mean multiple periods to be displayed, RS means the waveform is triggered on the rise side, DRP means the waveform is triggered on the drop side, and RC means to go back to the state before auto set.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The following command sets the type of automatic adjustment to multiple periods:

Command message: AUTTS MP

AUTO_TYPESET?

AUTO_TYPESET <type>

RELATED COMMANDS

ASET

AVERAGE_ACQUIRE, AVGA Command /Query

DESCRIPTION

The AVERAGE_ACQUIRE command selects the average times of average acquisition.

The response to the AVERAGE_ACQUIRE query indicates the times of average acquisition.

COMMAND SYNTAX

AVERAGE_ACQUIRE <time>

<time> : = {4, 16, 32, 64, 128, 256}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

AVERAGE_ACQUIRE <time>

AVERAGE_ACQUIRE?

The following turns the average times of average acquisition 16:

Command message: AVGA 16

BANDWIDTH_LIMIT, BWL Command /Query

DESCRIPTION	BANDWIDTH_LIMIT enables or disables the bandwidth-limiting low-pass filter. If the bandwidth filters are on, it will limit the bandwidth to reduce display noise. When you turn Bandwidth Limit ON, the Bandwidth Limit value is set to 20 MHz. It also filters the signal to reduce noise and other unwanted high frequency components. The response to the BANDWIDTH_LIMIT? Query indicates whether the bandwidth filters are on or off
COMMAND SYNTAX	BandWidth_Limit <channel>, <mode> [, <channel>, <mode> [, <channel>, <mode> [, <channel>, <mode>]]] <channel> := {C1, C2, C3, C4} <mode> := {ON, OFF}</mode></channel></mode></channel></mode></channel></mode></channel></mode></channel>
QUERY SYNTAX	BandWidth_Limit?
RESPONSE FORMAT	BandWidth_Limit <channel>, <mode> [, <channel> <mode> [, <channel>, <mode> [, <channel>, <mode>]]]</mode></channel></mode></channel></mode></channel></mode></channel>
EXAMPLE	The following turns on the bandwidth filter for all channels, when Global_BWL is on (as it is by defaul
	The following turns the bandwidth filter on for Channel 10nly:

MISCELLANEOUS

BUZZER, BUZZ Command /Query

DESCRIPTION

The BUZZER command enables or disables sound switch.

The response to the BUZZER? query indicates whether the sound switch is enabled.

COMMAND SYNTAX

BUZZer <state> <state> := {ON, OFF}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

BUZZER?

BUZZER <state>

Sending the following code will let the oscilloscope turn on the sound switch.

Command message: BUZZ ON

MISCELLANEOUS

*CAL? Query

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

The *CAL? query cause the oscilloscope to perform an internal self-calibration and generates a response

*CAL?

*CAL <diagnostics> <diagnostics> := 0 0 = Calibration successful

EXAMPLE

The following instruction forces a self-calibration:

Command message: *CAL?

Response message: *CAL 0

RELATED COMMANDS

AUTO_CALIBRATE

COMMUNICATION

COMM_HEADER, CHDR Command/ Query

DESCRIPTION

The COMM_HEADER command controls the way the oscilloscope formats responses to queries. There are three response formats: LONG, in which responses start with the long form of the header wor SHORT, where responses start with the short form of the header word; and OFF, for which headers are omitted from the response and units in numbers are suppressed.

Unless you request otherwise, the SHORT response format is used.

This command does not affect the interpretation of messages sent to the oscilloscope. Headers can be sent in their long or short form regardless of the COMM_HEADER setting.

Querying the vertical sensitivity of Channel 1 may result in one of the following responses:

NSE
LT_DIV 200E-3 V
IV 200E-3 V

Comm_HeaDeR <mode> <mode> := {SHORT, LONG, OFF} Comm_HeaDeR?

RESPONSE FORMAT

COMMAND SYNTAX

QUERY SYNTAX

Comm_HeaDeR <mode>

STATUS

*CLS Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

The *CLS command clears all the status data registers.

*CLS

The following command causes all the status data registers to be cleared:

Command message: *CLS

RELATED COMMANDS

ALL_STATUS, CMR, DDR, *ESR, EXR, *STB, URR

STATUS

CMR? Query

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The CMR? Query reads and clears the contents of the Command error Register (CMR) — see table next page---which specifies the last syntax error type detected by the instrument.

CMR?

CMR <value> <value> : = 0 to 14

The following instruction reads the contents of the CMR register:

Command message: CMR?

Response message: CMR 0

RELATED COMMANDS

ALL_STATUS? ,*CLS

ADDITIONAL INFORMATION

Command Error Status Register Structure (CMR)

Command Err	or Status Register Structure (CMR)
Value	Description
1	Unrecognized command/query header
2	Invalid character
3	Invalid separator
4	Missing parameter
5	Unrecognized keyword
6	String error
7	Parameter cannot allowed
8	Command String Too Long
9	Query cannot allowed
10	Missing Query mask
11	Invalid parameter
12	Parameter syntax error
13	Filename too long

MISCELLANEOUS

COMM_NET, CONET Command /Query

DESCRIPTION

The COMM_NET command changes the IP address of the oscilloscope's internal network interface.

The COMM_NET? query returns the IP address of the oscilloscope's internal network interface.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

COMM_NET <ip_add0>, <ip_add1>, <ip_add2>, <ip_add3>

< ip_add >:= 0 to 255

COMM_NET?

COMM_NET <ip_add0>, <ip_add1>, <ip_add2>, <ip_add3>

This instruction will change the IP address to 10.11.0.230:

Command message: CONET 10,11,0,230

COUPLING, CPL Command /Query

DESCRIPTION

COMMAND SYNTAX

The COUPLING command selects the coupling mode of the specified input channel

The COUPLING? query returns the coupling mode of the specified channel.

<channel>: CouPLing <coupling> <channel> := {C1, C2, C3, C4} <coupling> := {A1M, A50, D1M, D50, GN The A of the <coupling> is alternating currer The D of the <coupling> is direct current.1M and 50 is the impedance of input. Some serie (CML) couldn't have the set of input impedance.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<channel>: CouPLing?

<channel>: CouPLing <coupling>

The following command sets the coupling of Channel 2 to 50 Ω DC:

Command message: C2: CPL D50

CURSOR

CURSOR_MEASURE, CRMS Command /Query

DESCRIPTION

The CURSOR_MEASURE command specifies the type of cursor or parameter measurement to be displayed

The CURSOR_MEASURE? query indicates which cursors or parameter measurements ar currently displayed.

	Notation
HREL	Selected tract-cursor mode
VREL	Selected manual-cursor mode and set to voltage type
AUTO	Selected auto mode
OFF	Cursors and parameters off

COMMAND SYNTAX

CuRsor_MeaSure <mode> <mode>={ OFF,HREL,VREL,AUTO}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

CuRsor_MeaSure?

CuRsor_MeaSure <mode>

The following command determines cursor function is turned off:

Command message: CRMS OFF

CURSOR

CURSOR_SET, CRST Command /Query

DESCRIPTION

The CURSOR_SET command allows the us to position any one of the eight independencursors at a given screen location. The positions of the cursors can be modified of queried even if the required cursor is no currently displayed on the screen. What setting a cursor position, a trace must be specified, relative to which the cursor with be positioned.

The CURSOR_SET? Query indicates the current position of the cursor(s). The value returned depend on the grid type selected.

Notation		
HREF	The time value of curA under Track cursor mode	
HDIF	The time value of curB under Track cursor mode	
VREF	The volt-value of curA under manual cursor mode	
VDIF	The volt -value of curB under manual cursor mode	
TREF	The time value of curA under manual cursor mode	
TDIF	The time value of curB under manual cursor mode	

COMMANDSYNTAX

<trace>:CuRsor_SeT<cursor>,<position>[,< ursor>,<position>,<cursor>,<position>]

```
<trace >: = {C1, C2, C3, C4}
<cursor>
={HREF,HDIF,VREF,VDIF,TREF,TDIF}
<position>: = 0.1 to 11.9(or 17.9) DI
(basisantel of track the range of the
```

<cursor> :={ HREF, HDIF, VREF, VDI TREF, TDIF}

<trace>:CuRsor_SeT <cursor>, <position> [, <cursor>, <position>, <cursor>, <position>]

The following command positions the VREF and VDIF cursors at +3 DIV and -1 DI respectively, using C1 as a reference:

Command message: C1: CRST VREF, 3DIV, VDIF, -1DIV

RELATED COMMANDS

CURSOR_MEASURE, CURSOR_VALUE, PARAMETER_VALUE

RESPONSE FORMAT

EXAMPLE

CURSOR

CURSOR_VALUE?, CRVA? Query

DESCRIPTION

The CURSOR_VALUE? Query returns the values measured by the specified cursors for given trace. (The PARAMETER_VALUE? query is used to obtain measured waveform parameter values.)

Notation		
HREL	the cursor value under track cursor mode	
VREL	the dalta volt-value under manual cursor mode	

QUERY SYNTAX	<trace>: CuRsor_Value? [<mode>,<mode> <trace> : = { C1, C2, C3, C4} <mode> : = { HREL, VREL }</mode></trace></mode></mode></trace>
RESPONSE FORMAT	<trace> : CuRsor_Value HREL, <b->T - A->T>,<b->V - A->V>,<a->T>, <b->T>, <(B->V - A->V)/(B->T - A->T)> <trace> : CuRsor_Value VREL,<delta_vert></delta_vert></trace></b-></a-></b-></b-></trace>
EXAMPLE	The following query reads the dalta volt valu under manual cursor mode (VREL) of Channel 2:
	Command message: C2:CRVA? VREL
	Response message: C2:CuRsor_Value VREL 1.00V
RELATED COMMANDS	CURSOR_SET, PARAMETER_VALUE

CURSOR

CURSOR_AUTO, CRAU Command

DESCRIPTION

The CURSOR_AUTO command changes the cursor mode to auto mode

COMMAND SYNTAX

EXAMPLE

CRAU

The following code changes the cursor mode to auto mode

Command message: CRAU

SAVE/RECALL CSV_SAVE, CSVS Command /Querv DESCRIPTION The CSV_SAVE command selects the specified option of storing CSV format waveform. The CSV_SAVE? query returns the option storing waveform data of CSV format. COMMAND SYNTAX CSV_SAVE DD,<DD>,SAVE,<state> The option DD is the data depth which is saved a The option SAVE is that if the waveform data is stored with parameter. <DD>: ={MAX, DIS} the meaning of MAX is saved as the maximum data depth. The meaning of DIS is saved as the date depth which is displayed on the screen $\langle save \rangle := \{OFF, ON\}$ **QUERY SYNTAX** CSV_SAVE? **RESPONSE FORMAT** CSV_SAVE DD, <DD>, SAVE, <state> EXAMPLE The following command sets the save data depth the maximum and "para" save to off

Command message: CSV_SAVE DD,MAX,SAVE,OFF

FUNCTION

COUNTER, COUN Command /Query

DESCRIPTION

The COUNTER command enables or disables the cymometer display on the screen of instrument.

The response to the COUNTER? query indicate whether the cymometer is displayed on the scree of instrument.

COMMAND SYNTAX

COUNTER <state> < state > : = {ON, OFF}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

COUNTER?

COUNTER < state >

The following command enables the cymometed display

Command message: COUN ON

FUNCTION

CYMOMETER, CYMT Query

DESCRIPTION

The response to the CYMOMETER? query is the value of the counter which displays on the screer of the instrument. When the signal frequency is less than 10Hz, it returns 10Hz.

QUERY SYNTAX

CYMOMETER?

RESPONSE FORMAT

EXAMPLE

CYMOMETER <option>

The following instruction returns the value of the counter which displays on the screen of th instrument.

Response message: CYMT 10Hz

MISCELLANEOUS

DATE Command /Query

DESCRIPTION

COMMAND SYNTAX

The DATE command changes the date/time of the oscilloscope's internal real-time clock.

The command is only used in the CFL serie instrument.

DATE <day>, <month>, <year>, <hour>, <minute>, <second>

<day> := 1 to 31 <month> := {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,OCT, NOV, DEC} <year> := 1990 to 2089 <hour> := 0 to 23 <minute> := 0 to 59 <second> := 0 to 59

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

DATE?

DATE <day>, <month>, <year>, <hour>, <minute>, <second>

This instruction will change the date to NOV. 1, 2009 and the time to 14:38:16:

Command message: DATE 1, NOV, 2009,14,38,16

STATUS

DDR? Query

DESCRIPTION

The DDR? Query reads and clears the contents of the Device Dependent or device specific err Register (DDR). In the case of a hardwa failure, the DDR register specifies the origin the failure.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

DDR?

DDR <value> <value> : = 0 to 65535

The following instruction reads the contents of the DDR register:

Command message: DDR?

Response message: DDR 0

RELATED COMMANDS

ALL_STATUS? ,*CLS

DEFINE, DEF Command /Query

DESCRIPTION

The DEFINE command specifies the mathematic expression to be evaluated by a function.

COMMAND SYNTAX

DEFine EQN,'<equation>' <equation> the mathematical expression

Function Equations			
<source1> + <source2></source2></source1>	Addition		
<source1> - <source2></source2></source1>	Subtraction		
<source1>*<source2></source2></source1>	Multiplication		
<source1>/<source2></source2></source1>	Ratio		
FFT(source x)	FFT		

QUERY SYNTAX

DEFine?

RESPONSE FORMAT

DEFine EQN, '<equation>'

EXAMPLE

Command message: DEFine EQN, 'C1*C2'

MASS STORAGE

DELETE_FILE, DELF Command

DESCRIPTION

COMMAND SYNTAX

from the currently selected directory on mass storage.

The DELETE_FILE command deletes files

DELete_File DISK, <device>, FILE, '<filename>' <device>: ={UDSK} <filename>: = a file of specified directory and the specified file should be up to eight characte

EXAMPLE

The following command deletes a front-panel setup from the directory named SETUP in USB memory device:

Command message: DELF DISK, UDSK, FILE, '/ SETUP /001.SE

RELATED COMMANDS DIRECTORY

MASS STORAGE

DIRECTORY, DIR Command /Query

DESCRIPTION	The DIRECTORY command is used to manage the creation and deletion of file directories o mass storage devices. It also allows selection o the current working directory and listing o files in the directory.
	The query response consists of a double-quote string containing a DOS-like listing of th directory.
COMMAND SYNTAX	Directory DISK, <device>, ACTION, <action: '<directory>'</directory></action: </device>
QUERY SYNTAX	Directory? DISK, <device> [, '<directory>'] <device>: ={UDSK} <action>: ={CREATE, DELETE} < directory>: = A legal DOS path or filenam (This can include the '/' character to define th root directory.)</action></device></directory></device>
RESPONSE FORMAT	DIRectory DISK, <device> "<directory>"</directory></device>
EXAMPLE	The following asks for a listing of the directory of a USB memory device:
	Command message: DIR? DISK, UDSK

Response message: DIRectory DISK, UDSK, "A:

DISPLAY

DOT_JOIN, DTJN Command /Query

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The DOT_JOIN command controls the interpolation lines between data points.

DoT_JoiN <state> <state> := {ON, OFF}

DoT_JoiN?

DoT_JoiN <state>

The following instruction turns off the interpolation lines:

Command message: DTJN OFF

STATUS

*ESE Command /Query

DESCRIPTION

COMMAND SYNTAX

*ESE <value> <value> : = 0 to 255

bit (bit 5) of the STB register.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

*ESE?

*ESE <value>

The following instruction allows the ESB bit to be set if a user request (URQ bit 6, i.d. decimal 64) and/or a device dependent error (DDE bit 3, i.e. decimal 8) occurs. Summin these values yields the ESE register mass 64+8=72.

The *ESE command sets the Standard Event Status Enable register (ESE). This command allows one or more events in the ESR register to be reflected in the ESB summary message

Command message: *ESE 72

RELATED COMMANDS

*ESR

STATUS

*ESR? Query

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The *ESR? query reads and clears the content of the Event Status Register (ESR). The response represents the sum of the binary values of the register bits 0 to 7.

*ESR?

*ESR <value> <value> : = 0 to 255

The following instruction reads and clears the contents of the ESR register:

Command message: *ESR?

Response message: *ESR 0

RELATED COMMANDS

ALL_STATUS, *CLS, *ESE

ADDITIONAL INFORMATION

Standard Event Status Register (ESR)					
Bit	Bit Value	Bit Name	De	scription	Note
15~8			0	reserved by IEEE 488.2	
7	128	PON	1	Power off-to-ON transition as occurred	(1)
6	64	URQ	1	User Request has been issued	(2)
5	32	CME	1	Command parser Error has been detected	(3)
4	16	EXE	1	Execution Error detected	(4)
3	8	DDE	1	Device specific Error occurred	(5)
2	4	QYE	1	Query Error occurred	(6)
1	2	RQC	1	Instrument never requests bus control	(7)
0	1	OPC	1	Instrument never requests bus control	(8)

Notes

- (1) The Power On (PON) bit is always turned on (1) when the unit is powered up.
- (2) The User Request (URQ) bit is set true (1) when a soft key is pressed. An associated regist URR identifies which key was selected. For further details refer to the URR? query.
- (3) The CoMmand parser Error bit (CME) is set true (1) whenever a command syntax error detected. The CME bit has an associated CoMmand parser Register (CMR) which specifi the error code. Refer to the query CMR? for further details.
- (4) The EXecution Error bit (EXE) is set true (1) when a command cannot be executed due to some device condition (e.g. oscilloscope in local state) or a semantic error. The EXE bit has an associated Execution Error Register (EXR) which specifies the error code. Refer to quer EXR? for further details.
- (5) The Device specific Error (DDE) is set true (1) whenever a hardware failure has occurred power-up, or execution time, such as a channel overload condition, a trigger or a timebas circuit defect. The origin of the failure may be localized via the DDR? or the self test *TST query.
- (6) The Query Error bit (QYE) is set true (1) whenever (a) an attempt is made to read data from the Output Queue when no output is either present or pending, (b) data in the Output Queue has been lost, (c) both output and input buffers are full (deadlock state), (d) an attempt made by the controller to read before having sent an <END>, (e) a command is received before the response to the previous query was read (output buffer flushed).
- (7) The ReQuest Control bit (RQC) is always false (0), as the oscilloscope has no GPI controlling capability.
- (8) The OPeration Complete bit (OPC) is set true (1) whenever *OPC has been received, sind commands and queries are strictly executed in sequential order. The oscilloscope star processing a command only when the previous command has been entirely executed.

STATUS

*EXR? Query

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The EXR? query reads and clears the content of the Execution error Register (EXR). The EXR register specifies the type of the last error detected during execution.

EXR?

EXR <value> <value> : = to

The following instruction reads the contents of the EXR register:

Command message: EXR?

Response message (if no fault): EXR 0

RELATED COMMANDS

ALL_STATUS, *CLS

ADDITIONAL INFORMATION

Execution Error Status Register Structure (EXR)			
Value	Description		
21	Permission error. The command cannot be executed in local mode.		
22	Environment error. The instrument is not configured to correctly process command. For instance, the oscilloscope cannot be set to RIS at a slow timebase.		
23	Option error. The command applies to an option which has not been installed.		
25	Parameter error. Too many parameters specified.		
26	Non-implemented command.		
32	Waveform descriptor error. An invalid waveform descriptor has been detected.		
36	Panel setup error. An invalid panel setup data block has been detected.		
50	No mass storage present when user attempted to access it.		
53	Mass storage was write protected when user attempted to create, or a file, to delete file, or to format the device.		
58	Mass storage file not found.		
59	Requested directory not found.		
61	Mass storage filename not DOS compatible, or illegal filename.		
62	Cannot write on mass storage because filename already exists.		

MASS STORAGE

FILENAME, FLNM Command /Query

DESCRIPTION

COMMAND SYNTAX

The FILENAME command is used to change the default filename given to any traces, setups and hard copies when they are being stored to a mass storage device.

FiLeNaMe TYPE, <type>, FILE, '<filename>' <type>:={ C1,C2,C3, C4, SETUP,TA, TB, TC, TD, HCOPY} <filename> : = an alphanumeric string of up to characters forming a legal DOS filename.

Note: the file's extension can be specified automatically by the oscilloscope.

QUERY SYNTAX	FiLeNaMe? TYPE, <type> <type> :={ ALL, C1, C2, C3, C4, SETUP, TA, TB, TC, TD, HCOPY}</type></type>
RESPONSE FORMAT	FiLeNaMe TYPE, <type>, FILE, "<filename>' [,TYPE, <type>, FILE, "<filename>"]</filename></type></filename></type>
EXAMPLE	The following command designates channel 1 waveform files to be "TESTWF.DAV":
	Command message: FLNM TYPE, C1, FILE, 'TESTWF'
RELATED COMMANDS	DIRECTORY, DELETE FILE

ACQUISITION

FORCE_TRIGGER, FRTR Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

Causes the instrument to make one acquisitio

FoRce_TRigger

Either of the following pairs of instruction make one acquisition:

Command message1: TRMD SINGLE;ARM;FRTR

Command message2: TRMD STOP;ARM;FRTR

MASS STORAGE

FORMAT_VDISK, FVDISK Query

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The FORMAT_VDISK? query reads the capability of the USB memory device.

Format_VDISK?

Format_VDISK <capability> <capability>:= the capability of the USB memory device.

The following query reads the capability of the USB device.

Command message: Format_VDISK?

Response message: Format_VDISK 963 MB

FILTER, FILT Command /Query

DESCRIPTION

The FILTER command enables or disables filter the specified trace.

The response to the FILTER? query indicates whether the filter of specified trace is enabled

COMMAND SYNTAX

<channel>:FILTER <state> <channel> : = {C1,C2,C3,C4} <state> : = {ON,OFF}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<channel>:FILTER?

<channel>:FILTER <state>

The following command enables the filter of channel 1:

Command message: C1:FILT ON

RELATED COMMANDS

FILTS

FILT_SET, FILTS Command /Query

DESCRIPTION

COMMAND SYNTAX

<channel>: FILT_SET TYPE,<type>, <limit>,<limit_value> <channel> := {C1,C2,C3,C4} <type> := {LP,HP,BP,BR}

current parameter of the filter

LP is lowpass, HP is highpass, BP is bandpass, BR is bandreject <limit> := {UPPLIMIT,LOWLIMIT} if seted the <limit>,the <type> must be related

The FILT_SET command selects the specified typ of filter, and sets the limit value of filter.

The response to the FILT_SET? query indicates

<channel>: FILT_SET?

<channel>:FILTER TYPE,<type>,<limit>,

The following command changes the type of filter t bandpass, and sets the upplimit to 200 KHz and the lowlimit to 100 KHz:

Command message: C1:FILTS TYPE,BP, UPPLIMIT,200KHz,LOWLIMIT,100KHz

QUERY SYNTAX

RESPONSE FORMAT

imit_value >

EXAMPLE

FFT_WINDOW, FFTW Command /Query

DESCRIPTION

The FFT_WINDOW command selects the window of FFT(Fast Fourier Transform algorithm).

The response to the FFT_WINDOW? query indicates current window of FFT

COMMAND SYNTAX

FFT_WINDOW <window> < window > : = {RECT,BLAC,HANN,HAMN RECT is short for rectangle. BLAC is short for Blackman. HANN is short for hanning. HAMM is short for hamming,

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

FFT_WINDOW?

FFT_WINDOW,<window>

The following command sets the FFT window to hamming:

Command message: FFTW HAMM

FFT_ZOOM, FFTZ Command /Query

DESCRIPTION

The FFT_ZOOM command selects the specifie zoom of FFT.

The response to the FFT_ZOOM? query indicates current zoom in/out times of FFT

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

FFT_ZOOM?

FFT_ZOOM,<zoom>

FFT_ZOOM <zoom> < zoom > : = {1,2,5,10}

The following command sets the zoom factor of FFT to 1X:

Command message: FFTZ 1

FFT_SCALE, FFTS Command /Query

DESCRIPTION

The FFT_SCALE command selects the specified scale of FFT(Fast Fourier Transform algorithm).

The response to the FFT_SCALE? query indicate current vertical scale of FFT waveform.

COMMAND SYNTAX

FFT_SCALE <scale>
< scale > : = {VRMS,DBVRMS}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

FFT_SCALE?

FFT_SCALE,< scale >

The following command turns the vertical scale of FFT to dBVrms:

Command message: FFTS DBVRMS

DESCRIPTION

FFT_FULLSCREEN, FFTF Command /Query

The FFT_FULLSCREEN command enables or disables to display the FFT waveform full screen.

The response to the FFT_FULLSCREEN? query indicates whither the FFT waveform is full screen displayed.

COMMAND SYNTAX

FFT_FULLSCREEN <state> < state > : = {ON,OFF}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

FFT_FULLSCREEN?

 $FFT_FULLSCREEN < state >$

The following command enables to display the FFT waveform full screen:

Command message: FFTF ON

DISPLAY

GRID_DISPLAY, GRDS Command /Query

DESCRIPTION

The response to the GRID_DISPLAY? querindicates current type of the grid

The GRID_DISPLAY command selects the type of the grid which is used to display.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

GRID_DISPLAY?

GRID_DISPLAY <type> < type > : = {FULL,HALF,OFF}

GRID_DISPLAY < type >

The following command changes the type of grid to full grid:

Command message: GRID_DISPLAY FULL

WAVEFORMTRANS

GET_CSV, GCSV Query

DESCRIPTION

indicates current waveform of CSV format.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The response to the GET_CSV? query

The GET_CSV? query have two options to see They are the same as the options of CSVS.

GET_CSV? DD,<DD>,SAVE,<state>

The option DD is the data depth of the CSV format waveform. The option SAVE is that if the waveform data have parameters. <DD>: ={MAX, DIS} the meaning of MAX is that the CSV waveform's depth is maximum. The meaning of DIS is that CSV waveform's depth is the data which is displayed on the screen. <save>: ={OFF,ON}

the waveform date of CSV format

The following command transfers the waveform data of CSV format to the controller. It has the maximum depth of waveform data with parameters information

Command message: GET_CSV? DD,MAX,SAVE,ON

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

HOR_MAGNIFY, HMAG Command /Query

The HOR_MAGNIFY command horizontal expands the selected expansion trace by specified factor. Magnification factors n within the range of permissible values wi be rounded off to the closest legal value.

If the specified factor is too large for any of the expanded traces (depending on their current source), it is reduced to an acceptable value and only then applied to the traces. The VAB bit (bit 2) in the STB register is set when a factor outside the lega range is specified.

The HOR_MAGNIFY query returns the current magnification factor for the specified expansion function.

<exp_trace>: Hor_MAGnify <factor> <exp_trace>: = {TA, TB, TC, TD} <factor> : = 1 to 50,000,000 The range <factor> it is related to the current timebar and the range of the timebase

<exp_trace> : Hor_MAGnify?

<exp_trace>: Hor_MAGnify <factor>

The following instruction horizontally magnifies Trace A (TA) by a factor of 5:

DISPLAY

HOR_POSITION, HPOS Command /Query

DESCRIPTION to the traces.	The HOR_POSITION command horizontally positions the geometric center of the intensified zone on the source trace. Allowed positions range from division -9 to 9. If this would cause the horizontal position of any expanded trace to go outside the left or right screen boundaries, the difference of positions is adapted and then applied
	The VAB bit (bit 2) in the STB register is set if value outside the legal range is specified.
	The HOR_POSITION query returns the position of the geometric center of the intensified zone of the source trace.
COMMAND SYNTAX	<pre><exp_trace>: Hor_POSition <hor_position> <exp_trace>: = {TA, TB, TC, TD} <hor_position>: = -9 to 9 DIV(The range of th value is related to the size of the screen). the rang of the <hor_position> is related to th magnification factors of command HMAG. Whil the range after magnifying beyond the scree could display, it will be adjusted to the prope value.</hor_position></hor_position></exp_trace></hor_position></exp_trace></pre>
QUERY SYNTAX	<exp_trace>: Hor_POSition?</exp_trace>
RESPONSE FORMAT	<exp_trace>: Hor_POSition <hor_position></hor_position></exp_trace>
EVAMDI E	The fallowing instruction positions the content of

HARD COPY

DESCRIPTION

COMMAND SYNTAX

HARDCOPY_SETUP, HCSU Command /Query

The HARDCOPY_SETUP command configures the instrument's hard-copy driver

HCSU PSIZE, <page_size>, ISIZE, <image_size>, FORMAT, <format>, BCKG, <bckg>, PRTKEY, <printkey>

<page_size> :={ DEFAULT}
<printkey>:={SAVE,PRINT}
<format> := {PORTRAIT, LANDSCAPE}

cbckg> := {BLACK, WHITE}
<image_size>:={DEFAULT,A4,LETTER}.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

HCSU?

HCSU PSIZE, <page_size>, ISIZE, <image_size>, FORMAT, <format>, BCKG <bckg>, PRTKEY, <printkey>

The following example selects PORTRAIT format, sets the size of the image to "6*8CM

Command message: HCSU ISIZE, 6*8CM, FORMA' PORTRAIT

RELATED COMMANDS

SCDP

MISCELLANEOUS

*IDN? Query

DESCRIPTION	The *IDN? query is used for identification purposes ^{**} . The response consists of fou different fields providing information on th manufacturer, the scope model, the seria number and the firmware revision level.
QUERY SYNTAX	*IDN?
RESPONSE FORMAT	<pre>*IDN SIGLENT, <model>, <serial_number: <firmware_level> <model> : = A eleven characters mode identifier <serial_number> : = A 14-digit decimal code <firmware_level> : = similar to k.xx.yy.zz</firmware_level></serial_number></model></firmware_level></serial_number: </model></pre>

EXAMPLE

This example issues an identification request to the scope:

Command message: *IDN?

Response message: *IDN B&K Precision, 2553,SN#, 3.01.01.22

DISPLAY

EXAMPLE

INTENSITY, INTS Command /Query

DESCRIPTION	The INTENSITY command sets the intensity level of the grid or the trace.
	The intensity level is expressed as percentage (PCT). A level of 100 PC corresponds to the maximum intensity whil a level of 0 PCT sets the intensity to i minimum value.(The minimum value of the trace is 30 PCT)
	The response to the INTENSITY? Quer indicates the grid and trace intensity levels.
COMMAND SYNTAX	INTenSity GRID, <value>, TRACE, <value> <value> : = 0(or 30) to 100 [PCT]</value></value></value>
	Note 1: Parameters are grouped in pairs. The first of the pair names the variable to the modified, whilst the second gives the nevalue to be assigned. Pairs may be given any order and be restricted to those variable to be changed.
	Note 2: The suffix PCT is optional.
QUERY SYNTAX	INTenSity?
RESPONSE FORMAT	INTenSity TRACE, <value>, GRID, <value></value></value>

The following instruction enables remote

ACQUISITION

DESCRIPTION

INTERLEAVED, ILVD Command /Query

The INTERLEAVED command enables or disables random interleaved sampling (RIS for timebase settings where both single sho and RIS mode are available.

The response to the INTERLEAVED? Quer indicates whether the oscilloscope is in RI mode.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

InterLeaVeD <mode> <mode> := {ON, OFF}

InterLeaVeD?

InterLeaVeD <mode>

The following instructs the oscilloscope to us RIS mode:

Command message: ILVD ON

RELATED COMMANDS

TIME_DIV, TRIG_MODE

STATUS

INR? Query

DESCRIPTION

The INR? query reads and clears the contents of the INternal state change Register(INR). The INR register (table below) records the completion of various internal operations are state transitions.

Note : This command only supports 0 bit and 1 bit.

Internal State Register Structure (INR)			
Bit	Bit	Description	
	Value		-
1514		0	Reserved for future use
13	8192	1	Trigger is ready
12	4096	1	Pass/Fail test detected desired outcome
11	2048	1	Waveform processing has terminated in Trace D
10	1024	1	Waveform processing has terminated in Trace C
9	512	1	Waveform processing has terminated in Trace B
8	256	1	Waveform processing has terminated in Trace A
7	128	1	A memory card, floppy or hard disk exchange has been detected
6	64	1	Memory card, floppy or hard disk has become full in "AutoSto Fill" mode
5	32	0	Reserved for LeCroy use
4	16	1	A segment of a sequence waveform has been acquired
3	8	1	A time-out has occurred in a data block transfer
2	4	1	A return to the local state is detected
1	2	1	A screen dump has terminated
0	1	1	A new signal has been acquired

Response message1: INR 8913

If we send INR? query while the instrument didn't trigger, the INR register:

Command message2: INR?

Response message2: INR 8912

If we send INR? query after have sent a INR? query and the mode of the instrument is STOP The INR register:

Command message3: INR?

Response message3: INR 0

If we send INR? query while there is no and then make the instrument triggered. Finally we send another INR? query the INR register:

Command message4: INR?

Response message4: INR 1

RELATED COMMANDS

ALL STATUS? *CIS

DISPLAY

INVERTSET, INVS Command /Query

DESCRIPTION

COMMAND SYNTAX

<trace>:INVERTSET < state > < trace > : = {C1,C2,C3,C4,MATH} < state >:= {ON,OFF}

The INVERTSET command inverts the specified traces or the waveform of math. The response to the INVERTSET? que indicates whether the specified waveform

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<trace>:INVERTSET?

invert.

<trace>:INVERTSET < state >

The following instruction inverts the trace of channel 1:

Command message: C1:INVS ON

MISCELLANEOUS

LOCK, LOCK Command /Query

DESCRIPTION	The LOCK command enables or disables the panel keyboard of the instrument.
	When any command or query is executed in either local or remote state, the functions of the panel keys except "FORCE" are not available. When the panel keyboard of the instrument is locked, press "FORCE" key ca enable the panel keyboard function.
	The LOCK? query returns the status of the panel keyboard of the instrument.
COMMAND SYNTAX	LOCK < status > <status>:= {ON,OFF}</status>
QUERY SYNTAX	LOCK?
RESPONSE FORMAT	LOCK < status >
EXAMPLE	The following instruction enables the functions of the panel keys:
	Command message: LOCK ON

DISPLAY

MENU, MENU Command /Query

DESCRIPTION

The MENU command enables or disables to display the menu.

The response to the MENU? query indicates whether the menu is displayed.

COMMAND SYNTAX

MENU < status > <status>:= {ON,OFF}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

MENU?

MENU < status >

The following instruction enables the display of the menu:

Command message: MENU ON

ACQUISITION

DESCRIPTION

MATH_VERT_POS, MTVP Command /Query

The MATH_VERT_POS command controls the vertical position of the math waveform with specified source.

The FFT waveform isn't included. But we have another command which called VPOS t control its vertical position.

The response to the MATH_VERT_POS? query indicates the value of the vertical position of the math waveform.

MATH_VERT_POS <position> <position>:= the position is related to the position of the screen center. For example, if we set the position of MTVP to 25. The math waveform will be displayed 1 grid up to the vertical center of the screen. Namely one grid is 25.

MATH_VERT_POS?

MATH_VERT_POS < position >

The following instruction changes the vertica position of the math waveform to 1 grid up to the screen vertical centre:

Command message: MTVP 25

QUERY SYNTAX

RESPONSE FORMAT

COMMAND SYNTAX

EXAMPLE

ACQUISITION

DESCRIPTION

MATH_VERT_DIV, MTVD Command /Query

The MATH_VERT_DIV command controls the vertical sensitivity of the math waveform of specified source. We can only set the valu of existing

The FFT waveform isn't included.

The response to the MATH_VERT_DIV? query indicates the specified scale of math waveform of specified source.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

MATH_VERT_DIV < scale > < scale >:= 1PV/div ~ 100V/div.

MATH_VERT_DIV?

MATH_VERT_DIV < scale >

The following instruction changes the vertical sensitivity of the math waveform of specified source to 1V/div:

Command message: MTVD 1V

MEASURE_DELY, MEAD Command /Query

The MEASURE_DELY command selects the

The response to the MEASURE_DELY? query indicates the type of delay measure.

DESCRIPTION

COMMAND SYNTAX

MEASURE_DELY SOURCE,<mode>,TYPE,<type> <mode>:= {C1-C2, C1-C3, C1-C4, C2-C3, C2-C4, C3-C4} <type>:= {PHA,FRR,FRF,FFR,FFF,LRR,LRF,LFR, LFF}, The PHA is phase, the others are the same as the specified type of the instrument's delay measure

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

MEASURE_DELY?

type of delay measure.

MEASURE_DELY SOURCE,<mode>,TYPE,<type>

The following instruction sets the type of delay measure to phase between C1 and C2.

Command message: MEAD SOURCE,C1-C2,TYPE,PHA

ACQUISITION

EXAMPLE

OFFSET, OFST Command /Query

DESCRIPTION	The OFFSET command allows adjustment of the vertical offset of the specified input channel. The maximum ranges depend on the fixed sensitivity setting.
	If an out-of-range value is entered, the oscilloscope is set to the closest possible value and the VAB bit (bit 2) in the STB register is set.
	The OFFSET? query returns the offset value of the specified channel.
COMMAND SYNTAX	<channel>: OFfSeT <offset> <channel> : = {C1, C2, C3,C4} <offset> : = See specifications.</offset></channel></offset></channel>
QUERY SYNTAX	<channel>: OFfSeT?</channel>
RESPONSE FORMAT	<channel>: OFfSeT <offset></offset></channel>

The following command sets the offset of Channel 2 to -3 V:

Command message: C2: OFST -3V

STATUS

*OPC Command /Query

DESCRIPTION	The *OPC (OPeration Complete) command sets to true the OPC bit (bit 0) in the standard Event Status Register (ESR). This command has no other effect on the operation of the oscilloscope because the instrument starts parsing a command or query only after it has completely processed the previous command or query. The *OPC? query always responds with the ASCII character "1" because the oscilloscope only responds to the query when the previous command has been entirely executed.
COMMAND SYNTAX	*OPC
QUERY SYNTAX	*OPC?
RESPONSE FORMAT	*OPC 1

MISCELLANEOUS

*OPT Query

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

The *OPT? query identifies oscilloscope option installed software or hardware that is additiona to the standard instrument configuration. The response consists of a series of response fields listing all the installed options.

*OPT?

*OPT <option>

NOTE: If no option is present, the character 0 will be returned.

EXAMPLE : The following instruction querie the installed options:

*OPT?

Return: *OPT RS232,NET,USBTMC

CURSOR

PARAMETER_CLR, PACL Command

DESCRIPTION

test counter and starts it again at 0.

COMMAND SYNTAX

RELATED COMMANDS

The PARAMETER_CLR command clears the P/F

PArameter_CLr

PARAMETER_VALUE PFDD

CURSOR

DESCRIPTION

PARAMETER_CUSTOM, PACU Command /Query

The PARAMETER_CUSTOM command controls the parameters that have customizable qualifiers.

Note: The measured value of a parameter setup with PACU may be read using PAVA?

COMMAND SYNTAX

PArameter_CUstom <line>, <parameter>,<qualifier><line> : = 1 to 5 <parameter> : ={PKPK, MAX, MIN, AMPL, TOP, BASE, CMEAN, MEAN, RMS, CRMS, OVSN, FPRE, OVSP, RPRE, PER, FREQ, PWID, NWID, RISE, FALL, WID, DUTY, NDUTY } <qualifier> : = Measurement qualifier specific to each(source option)

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

PArameter_CUstom? <line>

PArameter_Custom <line>, <parameter>, <qualifier>

Command Example PACU 2, PKPK, C Query/Response Examples PACU? 2 return PACU 2, PKPK, C1 PAVA? CUST2 returns: C2: PAVA CUST2, 160.00mV

RELATED

COMMANDS PARAMETER CLR,

CURSOR

PARAMETER_VALUE?, PAVA?

DESCRIPTION

The PARAMETER_VALUE query returns the measurement values.

Parameters Available on All Models			
ALL	all parameters	NDUTY	negative duty cycle
AMPL	amplitude	NWID	negative width
BASE	base	OVSN	negative overshoot
CMEAN	mean for cyclic waveform	OVSP	positive overshoot
CRMS	root mean square for cyclic part of waveform	РКРК	peak-to-peak
DUTY	duty cycle	PER	period
FALL	falltime	RPRE	(Vmin-Vbase)/ Vamp before the waveform rising transition
FREQ	frequency	PWID	positive width
FPRE	(Vmin-Vbase)/ Vamp before the waveform falling transition	RMS	root mean square
MAX	maximum	RISE	risetime
MIN	minimum	TOP	top
MEAN	mean	WID	width

QUERY SYNTAX

<trace>: PArameter_VAlue? [<parameter>, ...</parameter>]<trace>: = { C1, C2, C3, C4 }</parameter> : = See table of parameter names on previous table.

RELATED COMMANDS

CURSOR_MEASURE, CURSOR_SET, PARAMETER_CUSTOM

PEAK_DETECT, PDET Command /Query

DESCRIPTION

The PEAK_DETECT command switches ON or OFF the peak detector built into the acquisition system.

The PEAK_DETECT? query returns the current status of the peak detector.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

Peak_DETect <state> <state> := {ON, OFF}

Peak_DETect?

PDET <state>

The following instruction turns on the peak detector:

Command message: PDET ON

DISPLAY

PERSIST, PERS Command /Query

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The PERSIST command enables or disables the persistence display mode.

PERSist <mode> <mode> := {ON, OFF}

PERSist?

PERSist <mode>

The following code turns the persistence display ON:

Command message: PERS ON

RELATED COMMANDS

PERSIST_SETUP

DISPLAY

DESCRIPTION

COMMAND SYNTAX

RESPONSE FORMAT

QUERY SYNTAX

EXAMPLE

PERSIST_SETUP, PESU Command /Query

The PERSIST_SETUP command selects the persistence duration of the display, in seconds, in persistence mode.

The PERSIST_SETUP? query indicates the current status of the persistence.

PErsist_SetUp <time> <time>: ={1, 2, 5, Infinite}

PErsist_SetUp?

PErsist_SetUp <time>

The following instruction sets the variable persistence at 5 Seconds:

Command message: PESU 5

RELATED COMMANDS

PERSIST

SAVE/RECALL SETUP

PANEL_SETUP, PNSU Command /Query

DESCRIPTION

The PANEL_SETUP command complements the *SAV or *RST commands. PANEL_SETUP allows you to archive panel setups in encoded form on external storage media.Only setup data read by the PNSU? query can be recalled into the oscilloscope.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

PaNel_SetUp <setup> <setup> : = A setup previously read by PNSU?

PaNel_SetUp?

PaNel_SetUp <setup>

The following instruction saves the scilloscope current panel setupin the file PANEL.SET:

Command message: PNSU?

RELATED COMMANDS

*RCL, *SAV

PF_DISPLAY, PFDS Command /Query

DESCRIPTION

The PF_DISPLAY command enables or disables to turn the test and display the messag in the pass/fail option.

The response to the PF_DISPLAY? query indicates whether the test is enabled and the message of pass/fail is displayed

PF_DISPLAY TEST,<state>,DISPLAY,<state <state> := {ON, OFF}

PF_DISPLAY TEST?

PF_DISPLAY TEST <state>,DISPLAY,<state

The following instruction enables to turn on th test and display the message of pass/fail:

Command message: PFDS TEST,ON,DISPLAY,ON

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

PF_SET, PFST Command /Query

DESCRIPTION

The PF_SET command sets the X mask and the Y mask of the mask setting in the pass/fail option.

The response to the PF_SET? query indicates the value of the X mask and the Y mask.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

PF_SET XMASK, <div>,YMASK, <div> <div> : = 0.04div~4.0div

PF_ SET?

PF_SET XMASK, <div>, YMASK, <div>

The following instruction sets the X mask to 0.4div and the Y mask to 0.5div of the mask setting in the pass/fail option:

Command message: PFST XMASK,0.4,YMASK,0.5

RELATED COMMANDS

PFSL PFST

SAVE/RECALL

PF_SAVELOAD, PFSL Command

DESCRIPTION The PF_SAVELOAD command saves or recall the created mask setting. COMMAND SYNTAX PF_ SAVELOAD LOCATION, <location>.ACTION. <action> The <location> means to save the created mas setting to the internal memories or the external memories. <location> : = {IN,EX} IN means to save the mask setting to the internal memories while EX means the externa memories. <action> := {SAVE,LOAD} SAVE means to save the mask setting while LOAD means recall the stored mask setting. **EXAMPLE** The following instruction saves the mask setting to the internal memories: Command message: PFSL LOCATION, IN, ACTION, SAVE **RELATED COMMANDS** PFCM

DESCRIPTION

PF_CONTROL, PFCT Command /Query

The PF_CONTROL command controls the pass/fail controlling options: "operate", "outp and the "stop on output".

See instrument's Operator Manual for these options

The response to the PF_CONTROL? query indicates the controlling options of the pass/fai

COMMAND SYNTAX

PF_CONTROL TRACE,<trace>,CONTROL,<control>,OUTF UT,<output>,OUTPUTSTOP,<state> <trace> := {C1,C2,C3,C4} <control> := {START,STOP} <output> := {FAIL,PASS} <state> := {ON,OFF}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

PF_CONTROL?

PF_CONTROL TRACE,<trace>,CONTROL,<control>, OUTPUT,<output>,OUTPUTSTOP,<state>

The following instruction sets source to channel, "operate" to "start", "output" to "pass" and "stop on output" to "off":

Command message:

PF_CREATEM, PFCM Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

The PF_CREATEM command creates the mast of the pass/fail.

PF_CREATEM

The following instruction creates the mask of the pass/fail.:

Command message: PFCM

RELATED COMMANDS

PFSL PFST

DESCRIPTION

PF_DATADIS, PFDD Query

The PF_DATADIS? query returns the number of the fail, pass and total number that the scree showing.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

PF_DATADIS?

PF_DATADIS FAIL,<num>,PASS,<num>,total,<num>

The following instruction returns the number of the message display of the pass/fail:

Command message: PFDD FAIL,0,PASS,0,TOTAL,0

RELATED COMMANDS

PACL

SAVE/RECALL SETUP

*RCL Command

DESCRIPTION	The *RCL command sets the state of the instrument, using one of the ten non-volatile panel setups, by recalling the complete front- panel setup of the instrument. Panel setup 0 corresponds to the default panel setup.
	The *RCL command produces the opposite effect of the *SAV command.
	If the desired panel setup is not acceptable, the EXecution error status Register (EXR) is set an the EXE bit of the standard Event Status Register (ESR) is set.
COMMAND SYNTAX	*RCL <panel_setup> <panel_setup>:= 0 to 20</panel_setup></panel_setup>
EXAMPLE	The following recalls the instrument setup previously stored in panel setup 3:
	Command message: *RCL 3
RELATED COMMANDS	PANEL_SETUP, *SAV, EXR

WAVEFORM TRANSFER

RECALL, REC Command

DESCRIPTIONThe RECALL command recalls a waveform fil
from the current directory on mass storage into
any or all of the internal memories M1 to
M10(or M20 in the CFL series).**COMMAND SYNTAX**<memory>: RECall DISK, <device>, FILE,
'<filename>'
<memory> : = {M1~M10}(or M1~M20 in the
CFL series)
<device> : = {UDSK}

<filename>: = A waveform file under a legal DOS path . A filename-string of up to eight characters, with the extension ".DAV". (This can include the '/' character to define the root directory.)

The following recalls a waveform file called "C1WF.DAV" from the memory card into Memory M1:

Command message: M1: REC DISK, UDSK FILE, 'C1WF.DAV'

RELATED COMMANDS

EXAMPLE

STORE, INR?

SAVE/RECALL SETUP **RECALL_PANEL, RCPN** Command DESCRIPTION The RECALL_PANEL command recalls a front-panel setup from the current directory on mass storage. COMMAND SYNTAX ReCall_PaNel DISK, <device>, FILE, '<filename>' $\langle device \rangle := \{UDSK\}$ <filename>: = A waveform file under a legal DOS path . A filename-string of up to eight characters, with the extension ".SET". (This can include the '/' character to define the root directory.) **EXAMPLE** The following recalls the front-panel setup from file SEAN. SET in a USB memory device: Command message: RCPN DISK, UDSK, FILE, 'SEAN. SET' **RELATED COMMANDS** PANEL_SETUP, *SAV, STORE_PANEL, *RCL

SAVE/RECALL SETUP

*RST Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

The *RST command initiates a device reset. The *RST sets recalls the default setup.

*RST

This example resets the oscilloscope:

Command message: *RST

RELATED COMMANDS

*CAL, *RCL

REF_SET, REFS Command /Query

DESCRIPTION	The REF_SET command sets the reference waveform and its options.
	The response to the REF_ SET? query indicate whether the specified reference waveform is turned on.
COMMAND SYNTAX	REF _ SET TRACE, <trace>REF,<ref>,state, <state>,SAVE,DO <trace> : = {C1,C2,C3,C4,C10FF,C20FF,C30FF,C40FI If the trace is closed , the specified trace will b Cx0FF,(x is 1,2,3,4), the closed trace couldn' be saved or set <ref> := {RA,RB,RC,RD} The Rx(x is A,B,C,D) is that which one can be stored or displayed <state> := {ON,OFF} The state enables or disables to display the specified reference waveform. If the command syntax have the option that SAVE,DO, means that the specified trace will be saved to the specified reference waveform.</state></ref></trace></state></ref></trace>
QUERY SYNTAX	REF _ SET? REF, <ref></ref>
RESPONSE FORMAT	REF _ SET REF, <ref>,STATE,<state></state></ref>
EXAMPLE	The following instruction saves the channel 1 waveform to the REFA, and turns on REFA:

SAVE/RECALL SETUP

*SAV Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

The *SAV command stores the current state of the instrument in internal memory. The *SAV command stores the complete front-panel setup of the instrument at the time the command is issued.

*SAV <panel_setup> <panel_setup>: = 1 to 20

The following saves the current instrument setup in Panel Setup 3:

Command message: *SAV 3

RELATED COMMANDS

PANEL_SETUP, *RCL

HARD COPY

SCREEN_DUMP, SCDP Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

The SCREEN_DUMP command is used to obtain the screen information of image formation of image formation of image formation of the screen scr

SCreen_DumP

The following command transfers the screen information of image format to the controller

Command message: SCDP

DISPLAY

DESCRIPTION

SCREEN_SAVE, SCSV Command /Query

The SCREEN_SAVE command controls the automatic Screen Saver, which automatically shuts down the internal color monitor after a preset time.

The response to the SCREEN_SAVE? query indicates whether the automatic screen saver feature is on or off.

Note: When the screen save is in effect, the oscilloscope is still fully functional.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

SCreen_SaVe <enabled> <enabled> := {YES, NO}

SCreen_SaVe?

SCreen_SaVe <enabled>

The following enables the automatic screen sav

Command message: SCSV YES

STATUS

*SRE Command /Query

DESCRIPTION	The *SRE command sets the Service Request Enable register (SRE). This command allows the user to specify which summary message bit(s) in the STB register will generate a servic request.
	A summary message bit is enabled by writing a '1' into the corresponding bit location. Conversely, writing a '0' into a given bit location prevents the associated event from generating a service request (SRQ). Clearing the SRE register disables SRQ interrupts.
	The *SRE? query returns a value that, when converted to a binary number, represents the bit settings of the SRE register.
	Note: that bit 6 (MSS) cannot be set and its returned value is always zero.
COMMAND SYNTAX	*SRE <value> <value> : = 0 to 255</value></value>
QUERY SYNTAX	*SRE?
RESPONSE FORMAT	*SRE <value></value>
EXAMPLE	The following instruction allows an SRQ to be

The following instruction allows an SRQ to be generated as soon as the MAV summary bit (b 4, i.e. decimal 16) or the INB summary bit (bit

STATUS

*STB? Query

DESCRIPTION

The *STB? query reads the contents of the 488.1 defined status register (STB), and the Master Summary Status (MSS). The response represents the values of bits 0 to 5 and 7 of the Status Byte register and the MSS summary message.

The response to a *STB? Query is identical to the response of a serial poll except that the MSS summary message appears in bit 6 in place of the RQS message.

QUERY SYNTAX

EXAMPLE

RESPONSE FORMAT

*STB?

*STB <value> <value> : = 0 to 255

The following reads the status byte register:

Command message: *STB?

Response message: *STB 0

RELATED COMMANDS

ALL_STATUS, *CLS, *SRE

ADDITIONAL INFORMATION

Status Byte Register (STB)				
Bit	Bit Value	Bit Name	Description	Note
7	128	DIO7	0 reserved for future use	
6	64	MSS/RQS	at least 1 bit in STB masked by SRE is 1	(1)
		MSS=1	service is	(2)
		RQS=1	requested	
5	32	ESB	1 an ESR enabled event has occurred	(3)
4	16	MAV	1 output queue is not empty	(4)
3	8	DIO3	0 reserved	
2	4	VAB	1 a command data value has been adapted	(5)
1	2	DIO1	0 reserved	
0	1	INB	1 an enabled INternal state change has	(6)
			occurred	

Notes

- (1) The Master Summary Status (MSS) indicates that the instrument requests service, whilst the Service Request status — when set — specifies that the oscilloscope issued a service reque Bit position 6 depends on the polling method: Bit 6 = MSS if an *STB? Query is received
 - = RQS if serial polling is conducted
- (2) Example: If SRE=10 and STB=10 then MSS=1. If SRE=010 and STB=100 then MSS=0.
- (3) The Event Status Bit (ESB) indicates whether or not one or more of the enabled IEEE 488.2 events have occurred since the last reading or clearing of the Standard Event Status Registe (ESR). ESB is set if an enabled event becomes true (1).
- (4) The Message AVailable bit (MAV) indicates whether or not the Output queue is empty. The MAV summary bit is set true (1) whenever a data byte resides in the Output queue.
- (5) The Value Adapted Bit (VAB) is set true (1) whenever a data value in a command has been adapted to the nearest legal value. For instance, the VAB bit would be set if the timebase is redefined as 2 μs/div since the adapted value is 2.5 μs/div.
- (6) The INternal state Bit (INB) is set true (1) whenever certain enabled internal states are entered. For further information, refer to the INR query.

STOP Command

DESCRIPTION

The STOP command immediately stops the acquisition of a signal. If the trigger mode is AUTO or NORM.

COMMAND SYNTAX

EXAMPLE

The following stops the acquisition process:

Command message: STOP

STOP

RELATED COMMANDS

ARM_ACQUISITION, TRIG_MODE, WAIT

WAVEFORM TRANSFER

STORE, STO Command

DESCRIPTION

COMMAND SYNTAX

The STORE command stores the contents of the specified trace into one of the internal memories M1 to M10(or M20 in the CFL series) or to the current directory in a USB memory device.

STOre [<trace>, <dest>] <trace>: = {TA, TB, TC, TD, C1, C2, C3, C4,ALL_DISPLAYED} <dest>: ={M1~M10(or M20 in the CFL series),UDSK}

Note: If the STORE command is sent without an argument, and the current trace isn't enabled, the current trace will be enabled and stored in the Store Setup. This setup can be modified using the STORE_SETUR command.

The following command stores the contents of Channel 1(C1) into Memory 1 (M1):

Command message: STO C1, M1

The following command stores all currently displayed waveforms onto the USB memory device:

Command message: STO ALL_DISPLAYED, UDSK

EXAMPLE

SAVE/RECALL SETUP

STORE_PANEL, STPN Command

DESCRIPTION	The STORE_PANEL command stores the complete front-panel setup of the instrument, at the time the command is issued, into a file on the specified-DOS path directory in a USB memory device.
COMMAND SYNTAX	STore_PaNel DISK, <device>, FILE, '<filename>' <device>: ={UDSK} < directory>: =A legal DOS path or filename. A filename -string of up to 8 characters, with th extension ".SET". (This can include the '/' character to define the root directory.)</device></filename></device>
EXAMPLE	The following code saves the current instrumer setup to root directory of the USB memory device in a file called "SEAN.SET":
	Command message: STore_PaNel DISK,UDSK,FILE,'SEAN.SET'
	The following code saves the current instrumer setup to specified-directory of the USB memory device in a file called "SEAN.SET":
	Command message: STore_PaNel DISK,UDSK,FILE,'/AAA/SEAN
RELATED COMMANDS	*SAV, RECALL_PANEL, *RCL

WAVEFORM TRANSFER

STORE_SETUP, STST Command /Query

DESCRIPTION

COMMAND SYNTAX

The STORE_SETUP command controls the wa in which traces will be stored. A single trace of all displayed traces may be enabled for storage

STore_SeTup [<trace>, <dest>] <trace> : = {C1,C2,C3,C4,ALL_DISPLAYED <dest>: ={M1~M10(or M20 in the CFL series),UDSK}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

STore_SeTup?

STore_SeTup <trace>, <dest>

The following command selects Channel 1 to b stored.

Command message: STST C1, UDSK

RELATED COMMANDS

STORE, INR

SAMPLE_STATUS, SAST

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The SAST? query the acquisition status of the scope.

SAST?

SAST < status >

The following command reads the acquisition status of the scope.

Command message: SAST?

Response message: SAST trig'd

SAMPLE_RATE, SARA Query

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

The SARA? query returns the sample rate of the scope.

SARA?

SARA <value>

The following command reads the sample rate of the scope.

Command message: SARA?

Response message: SARA 500.0kSa

DESCRIPTION

SAMPLE_NUM, SANU Query

The SANU? query returns the number of sampled points available from last acquisition and the trigger position.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

SANU? <channel>

SANU <value>

The following command reads the number of sampled points available from last acquisition from the Channel 2.

Command message: SANU? C2

Response message: SANU 6000

SKEW, SKEW Command

DESCRIPTION

The SKEW command sets the skew value of the specified trace.

The response to the SKEW? query indicates the skew value of the specified trace.

COMMAND SYNTAX

<trace>:SKEW <skew> <trace> := {C1,C2,C3,C4 } <skew>: = it is a value about time.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<trace>:SKEW <skew>

<trace>:SKEW?

The following command sets channel 1 skew value to 3ns

Command message: C1:SKEW 3NS

SET50, SET50 Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

SET50

signal amplitude.

The following command sets the trigger level of the specified trigger source to the centre of the signal amplitude

The SET50 command sets the trigger level of the specified trigger source to the centre of the

Command message: SET50

SINXX_SAMPLE, SXSA Command /Query

DESCRIPTION

The SINXX_SAMPLE command sets the way of interpolation.

The response to the SINXX_SAMPLE? query indicates the way of interpolation.

COMMAND SYNTAX

SINXX_SAMPLE, <state> <state> := {ON,OFF} ON means sine interpolation, and OFF means linear interpolation

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

SINXX_SAMPLE?

SINXX_SAMPLE <state>

The following instruction sets the way of the interpolation to sine interpolation:

Command message: SXSA ON

TIME_DIV, TDIV Command /Query

DESCRIPTION

The TIME_DIV command modifies the timebase setting. The new timebase setting ma be specified with suffixes: NS for nanoseconds US for microseconds, MS for milliseconds, S for seconds, or KS for kiloseconds. An out-ofrange value causes the VAB bit (bit 2) in the STB register to be set.

The TIME_DIV? query returns the current timebase setting.

COMMAND SYNTAX

Time_DIV <value> <value>:={1NS(not every type has this value),2.5NS,5NS,10NS,25NS,50NS,100NS,2: 0NS,500NS,1US,2.5US,5US,10US,25US,50U 100US,250US,500US,1MS,2.5MS,50MS,10MS 25MS,50MS,100MS,250MS,500MS,1S,2.5S,5 ,10S,25S,50S}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

RELATED COMMANDS

Time_DIV?

Time_DIV <value>

The following sets the time base to 500 μ s /div:

Command message: TDIV 500US

TRIG_DELAY, TRIG_MODE

WAVEFORM TRANSFER

TEMPLATE, TMPL

DESCRIPTION

The TEMPLATE? query produces a copy of th template that describes the various logical entities making up a complete waveform. In particular, the template describes in full detail the variables contained in the descriptor part o a waveform.

QUERY SYNTAX

RESPONSE FORMAT

RELATED COMMANDS

TeMPLate?

TeMPLate "<template>" <template> : = A variable length string detailin the structure of a waveform.

WF

DISPLAY

TRACE, TRA Command /Query

DESCRIPTION

The TRACE command enables or disables the display of a trace. An environment error is set an attempt is made to display more than four waveforms.

The TRACE? query indicates whether the specified trace is displayed or not.

COMMAND SYNTAX

<trace>: TRAce <mode> <trace>: = {C1, C2, C3, C4, TA, TB, TC, TD} <mode> : = {ON, OFF}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<trace>: TRAce?

<trace>: TRAce <mode>

The following command displays Channel 1 (C

Command message: C1: TRA ON

*TRG Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

The *TRG command executes an ARM command.

*TRG

The following command enables signal acquisition:

Command message: *TRG

RELATED COMMANDS

ARM_ACQUISITION, STOP, WAIT

TRIG_COUPLING, TRCP Command /Query

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<trig_source>: TRig_CouPling <trig_coupling <trig_source>: = {C1, C2, C3, C4, EX, EX5, LINE} <trig_coupling>: = {AC,DC,HFREJ,LFREJ}

The TRIG_COUPLING command sets the coupling mode of the specified trigger source.

The TRIG_COUPLING? query returns the trigger coupling of the selected source.

<trig_source>: TRig_CouPling?

<trig_source>: TRig_CouPling <trig_coupling>

The following command sets the coupling mode of the trigger source Channel 2 to AC:

Command message: C2: TRCP AC

TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL, TRIG_MODE, TRIG_SELECT TRIG_SLOPE

RELATED COMMANDS

DESCRIPTION

TRIG_DELAY, TRDL Command /Query

The TRIG_DELAY command sets the time at which the trigger is to occur with respect to the first acquired data point.

This mode is called pre-trigger acquisition, as data are acquired before the trigger occurs. Negative trigger delays must be given in seconds. This mode is called post-trigger acquisition, as the data are acquired after the trigger has occurred.

If a value outside the range, the trigger time will be set to the nearest limit and the VAB bit (bit will be set in the STB register. The response to the TRIG_DELAY? query indicates the trigger time with respect to the first acquired data point

TRig_DeLay <value> <value> : = the range of value is related to the timebase.

Note: The suffix S is optional and assumed.

TRig_DeLay?

TRig_DeLay <value>

The following command sets the trigger delay to -2ms (posttrigger):

QUERY SYNTAX

RESPONSE FORMAT

COMMAND SYNTAX

EXAMPLE

TRIG_LEVEL, TRLV Command /Query

DESCRIPTION

COMMAND SYNTAX

The TRIG_LEVEL command adjusts the trigge level of the specified trigger source. An out-ofrange value will be adjusted to the closest legal value and will cause the VAB bit (bit 2) in the STB register to be set.

The TRIG_LEVEL? query returns the current trigger level.

<trig_source>: TRig_LeVel <trig_level> <trig_source>: = {C1, C2, C3, C4, EX, EX5} <trig_level>: = -6DIV* volt/div to 6DIV * volt/div

Note: The suffix V is optional and assumed.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<trig_source>: TRig_LeVel?

<trig_source>: TRig_LeVel <trig_level>

The following code adjusts the trigger level of Channel 3 to 52.00mv:

Command message: C3:TRig_LeVel 52.00mv

TRIG_COUPLING, TRIG_DELAY, TRIG_MODE, TRIG_SELECT, TRIG_SLOPE

RELATED COMMANDS

TRIG_MODE, TRMD Command /Query

DESCRIPTION

The TRIG_MODE command specifies the trigge mode.

The TRIG_MODE? query returns the current trigger mode.

NOTE: STOP is a part of the option of this command, but is not a trigger mode of the instrument

<mode>: = {AUTO, NORM, SINGLE, STOP}

COMMAND SYNTAX

RESPONSE FORMAT

QUERY SYNTAX

EXAMPLE

TRig_MoDe?

TRig_MoDe <mode>

TRig_MoDe <mode>

The following selects the normal mode:

Command message: TRMD NORM

ARM_ACQUISITION, STOP, TRIG_SELECT, TRIG_COUPLING, TRIG_LEVEL, TRIG_SLOP

RELATED COMMANDS

DESCRIPTION

COMMAND SYNTAX

OPTION

TRIG_SELECT, TRSE Command /Query

The TRIG_SELECT command is used to set the trigger type and the type's option

HT which is an option of the TRIG_SELECT command is related to the TRSL command. The TRSL command could set the <trig_slope>. The HT's polarity will also be changed.

The TRIG_SELECT? query returns the current trigger type.

TRig_SelEct <trig_type>,SR,<source>,HT, <hold_type>,HV,<hold_value>

TRig_SelEct<trig_type>,SR,<source>,CHAR, <characteristicse>,POL,<polarity>,SYNC,<sync type>,LINE, <line>

TRig_SelEct INTV,SR,<source>,VERT,<vertic

<trig_type>:= {EDGE, GLIT,INTV,TV,} GLIT means pulse trigger, INTV means slope trigger and TV means video trigger.

Options: SR HT HV POL CHAR SYNC LINE VERT

HT,<hold_type>:is used to set pulse type. <hold_type> := {TI, PS, PL,PE, IS, IL,IE} TI means holdoff, PS means that the pulse width is smaller than the set value. PL means that the pulse width is larger than the set value. PE mean that the pulse width is equal with the set value. I

SR,< source > : is used to set the trigger's channel.If you want to set the other option. You must set it. <source $>: = \{C1, C2, C3, C4, EX, EX5\}$ CHAR, <characteristicse>:is used to set the standard .if you want to set it, the <trig_type> must be set to TV. <characteristicse>:={NTSC, PALSEC} SYNC,<sync_type>:is used to set sync. If you Want to set it. You must set <trig_type> to TV <sync_type> : = {AL,LN,OF,EF} AL means all lines: LN means line num: OF means odd field; EF means even field LINE, line>: is used to set the line num. if you want to set it. The SYNC must be set to LINENUM POL,<polarity>: is used to set polarity. If you want to set it. You must set <trig_type> to TV <polarity>: = {PO,NE} PO means positive. NE means negative. VERT,<vertical>:is used to set vertical. If you Want to set it. You must set <trig_type> INTV <vertical>: = {UP,DOWN,BOTH} TRig_SelEct? TRig_SelEct <mode>,the other options

The following sets the trigger type to video, the trigger source to C1, the standard to NTSC, the

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

ACQUISITION TRIG_SLOPE, TRSL Command /Querv DESCRIPTION The TRIG_SLOPE command sets the trigger slope of the specified trigger source. The TRIG_SLOPE? query returns the trigger slope of the selected source. COMMAND SYNTAX <trig_source>: TRig_SLope <trig_slope> <trig_source>: = {C1, C2, C3, C4, EX, EX5, LINE} <trig_slope>: = {NEG, POS,WINDOW} **QUERY SYNTAX** <trig_source> : TRig_Slope? **RESPONSE FORMAT** <trig_source>: TRig_SLope <trig_slope> EXAMPLE The following sets the trigger slope of Channel 2 to negative: Command message: C2: TRSL NEG TRIG_COUPLING, TRIG_DELAY, **RELATED COMMANDS** TRIG_LEVEL, TRIG_MODE, TRIG_SELECT, TRIG_SLOPE

UNIT, UNIT Command /Query

DESCRIPTION

The UNIT command sets the unit of the specified trace.

The UNIT query returns the unit of the specified trace.

COMMAND SYNTAX

<channel>: UNIT <type> <channel>: = {C1, C2, C3, C4} <type>: = {V,A}

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<channel>: UNIT?

<channel>: UNIT <type>

The following command sets the unit of the channel 1 to V:

Command message: C1: UNIT V

DISPLAY

DESCRIPTION

VERT_POSITION, VPOS Command /Query

The VERT_POSITION command adjusts the vertical position of the specified FFT trace on th screen. It does not affect the original offset value obtained at acquisition time.

The VERT_POSITION? query returns the curre vertical position of the specified FFT trace.

COMMAND SYNTAX

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<trace>: Vert_POSITION <display_offset> <trace>: = {TA, TB, TC, TD} <display_offset>: =-40 DIV to 40 DIV

Note: The suffix DIV is optional.

<trace>: Vert_POSition?

<trace>: Vert_POSITION <display_offset>

The following shifts FFT Trace A (TA) upwards by +3 divisions relative to the position at the tim of acquisition:

Command message: TA: VPOS 3DIV

VOLT_DIV, VDIV Command /Query

DESCRIPTION

The VOLT_DIV command sets the vertical sensitivity in Volts/div. The VAB bit (bit 2) in the STB register is set if an out-of-range value is entered.

The VOLT_DIV query returns the vertical sensitivity of the specified channel.

COMMAND SYNTAX

<channel>: Volt_DIV <v_gain> <channel>: = {C1, C2, C3, C4} <v_gain>: = 2mV to 10V(or 5V in the CFL series) Note: The suffix V is optional.

QUERY SYNTAX

RESPONSE FORMAT

EXAMPLE

<channel> : Volt_DIV?

<channel>: Volt_DIV <v_gain>

The following command sets the vertical sensitivity of channel 1 to 50 mV/div:

Command message: C1: VDIV 50MV

VERTICAL, VTCL Command /Query

DESCRIPTION	The VERTICAL command controls the vertical position of the slope trigger line. It is related to the TRSE command. The VERT option of the TRSE command changes the controlling type of the slopes trigger line.
	When the slope trigger lines are both controlled, the vertical position of the slope trigger line is th up one's position.
	The VERTICAL query returns the vertical position of the slope trigger line.
COMMAND SYNTAX	<pre><channel>: VERTICAL <pos> <channel>: = {C1, C2, C3, C4} <pos>: = the position is related to the screen vertical center. For example, if we set the vertica position of the slope trigger line to 25, it will be displayed 1 grid up to the screen vertical center. Namely one grid is 25.</pos></channel></pos></channel></pre>
QUERY SYNTAX	<channel>: VERTICAL?</channel>
RESPONSE FORMAT	<channel>: VERTICAL <pos></pos></channel>
EXAMPLE	The following command sets the vertical positio of the slope trigger line to 25 that what is the distance from the up of centre about 1 grid :

Command message

WAVEFORM TRANSFER

DESCRIPTION

WAVEFORM, WF Query

A WAVEFORM? Query transfers a waveform from the oscilloscope to the controller.

A waveform consists of several distinct entities:

- 1. the descriptor (DESC)
- 2. the user text (TEXT)
- 3. the time (TIME) descriptor
- 4. the data (DAT1) block, and, optionall
- 5. a second block of data (DAT2)

The WAVEFORM? Query instructs the oscilloscope to transmit a waveform to the controller. The entities may be queried independently. If the "ALL" parameter is specified, all four or five entities are transmitted in one block in the order enumerated above.

Note: The format of the waveform data depends on the current settings specified by the last WAVEFORM_SETUP command.

QUERY SYNTAX

<trace>: WaveForm? <trace> : = { C1,C2,C3,C4}

DEGRONICE EODI CAR

Note:

Offset data factor is a 4 byte floating point number starting at address 0xA0. Amplitude scale factor data is a 4 byte floating point number starting at address 0x9C. Waveform descriptor block starts off from "WAVEDESC" in the return data. The size of the descriptor is 0x16e - 0x15 + 1.

All waveform data are represented in two's complement binary. It must be converted to decimal and apply to the linear equation formula y = mx + b, where x is the data in decimal value, m is the amplitude scale factor, and b is the offset data factor.

For detailed description, see the end of the document.

WAVEFORM TRANSFER

WAVEFORM_SETUP, WFSU Command /Query

DESCRIPTION

The WAVEFORM_SETUP command specifies the amount of data in a waveform to be transmitted to the controller. The command controls the settings of the parameters listed below.

Note: This command currently only support NP

Notation			
FP	first point	NP	number of points
SP	sparsing		

Sparsing (SP): The sparsing parameter defines the interval between data points. For example: SP = 0 sends all data points

SP = 0 sends all data points SP = 1 sends all data points

SI = I sends an data points

SP = 4 sends every 4th data point

Number of points (NP): The number of points parameter indicates how many points should be transmitted. For example:

NP = 0 sends all data points

NP = 1 sends 1 data point

NP = 50 sends a maximum of 50 data points NP = 1001 sends a maximum of 1001 data points

First point (FP): The first point parameter specifies the address of the first data point to be sent. For waveforms acquired in sequence mode this refers to the relative address in the given

QUERY SYNTAX

WaveForm_SetUp?

Note 1: After power-on, SP is set to 4, NP is set to 1000, and FP is set to 0.

Note 2: Parameters are grouped in pairs. The first of the pair names the variable to be modified, whilst the second gives the new value to be assigned. Pairs may be given in any order and may be restricted to those variables to be changed.

RESPONSE FORMAT

EXAMPLE

WaveForm_SetUp SP, <sparsing>, NP, <number>, FP, <point>

The following command specifies that every 3r data point (SP=3) starting at address 200 shoul be transferred:

Command message: WFSU SP, 3, FP, 200

RELATED COMMANDS

WAVEFORM

WAIT, WAIT Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

The WAIT command prevents the instrument from analyzing new commands until the oscilloscope has completed the current acquisition.

The instrument will be waiting for trigger or the limit time over (if we set it) or the device time out when we sent this command

WAIT <time>

Note : This command have two ways to use. One sets the limited time, another one doesn't set the limited time.

If we move the trigger level of the source to the position where the trace isn't triggered. Then we send an ARM command to set the trigger mode to single. Finally we send the WAIT command. The instrument will be waiting for triggering until the time over (if we set it) or time out.

If we move the trigger level of the source, and the instrument is triggered. Then we send an ARM command to set the trigger mode to single Finally we send the WAIT command. The WAIT command will be finished if we send a FRTR for triggering.

Command message: WAIT

DISPLAY

XY_DISPLAY, XYDS Command /Query

DESCRIPTION

The XY_DISPLAY command enables or disable to display the XY format

The response to the XY_DISPLAY? que indicates whether the XY format display enabled.

COMMAND SYNTAX

XY_DISPLAY <state> <state>: = {ON, OFF}

QUERY SYNTAX

EXAMPLE

RESPONSE FORMAT

XY_DISPLAY <state>

XY_DISPLAY?

The following command enables to display the XY format:

Command message: XYDS

Index

A

ALL_STATUS?, ALST?, Query, ARM_ACQUISITION, ARM, Command, ATTENUATION, ATTN,Command/Query, AUTO_CALIBRATE, ACAL,Command/Query, AUTO_SETUP, ASET,Command, AUTO_TYPESET, AUTTS, Command/Query, AVERAGE_ACQUIRE, AVGA, Command/Query,

В

BANDWIDTH_LIMIT, BWL,Command/Query, BUZZER, BUZZ, Command,

С

CAL?, Query, CLS, Command, CMR?, Query, COMM_NET, CONET,Command/Query, COUPLING, CPL,Command/Query, CURSOR_SET, CRST,Command/Query, CURSOR_VALUE?, CRVA?,Query, CURSOR_AUTO, CRAU, Command, CSV_SAVE, CSVS, Command/Query, COUNTER, COUN, Command/Query, CYMOMETER, CYMT, Query,

D

DATE, Command/Query, DDR?, Query, DEFINE, DEF, Command/Query,

F

FILENAME, FLNM, Command/Query, FORMAT_VDISK, FVDISK, Query, FILTER, FILT, Command/Query, FILT_SET, FILTS, Command/Query, FFT_WINDOW, FFTW, Command/Query, FFT_ZOOM, FFTZ, Command/Query, FFT_SCALE, FFTS, Command/Query, FFT_FULLSCREEN, FFTF, Command/Query,

G

GRID_DISPLAY, GRDS, Command/Query, GCSV, GET_CSV, Query,

Η

HARDCOPY_SETUP, HCSU, HOR_MAGNIFY, HMAG,Command/Query, HOR_POSITION, HPOS,Command/Query,

I

IDN?, Query, INTENSITY, INTS,Command/Query, INTERLEAVED, ILVD,Command/Query, INR, INR, Query, INVERT_SET, INVS, Command/Query,

L LOCK, Command/Query,

Μ

MENU, MENU, Command/Query, MATH_VERT_POS, MTVP, Command/Query, MATH_VERT_DIV, MTVD, Command/Query, MEASURE_DELY_MEAD_Command/Query PEAK_DETECT, PDET,Command/Query, PERSIST, PERS,Command/Query, PERSIST_SETUP, PESU,Command/Query, PANEL_SETUP,PNSU, Command/Query, PF_DISPLAY, PFDS, Command/Query, PF_SAVELOAD, PFSL, Command, PF_CONTROL, PFCT, Command, PF_CREATEM, PFCM, Command, PF_DATEDIS, PFDD, Query,

R

RCL, Command, RECALL, REC, Command, RECALL_PANEL, RCPN,Command, RST, Command, REF_SET, REFS, Command/Query,

S

SAV, Command, SCREEN_DUMP, SCDP,Command/Query, SRE, Command/Query, STDP, Query, STOP, Command, STORE, STO, Command, STORE_PANEL, STPN,Command, STORE_SETUP, STST,Command/Query, SAMPLE_STATUS, SAST/ Query, SAMPLE_RATE, SARA/ Query, SAMPLE_NUM, SANU/ Query, SKEW, SKEW, Command, SETTO%50, SET50, Command, SINXX_SAMPLE, SXSA, Command/Query, U UNIT, UNIT, Command/Query,

V

VOLT_DIV, VDIV,Command/Query, VERTICAL, VTCL, Command/Query,

W

WAIT, Command, WAVEFORM,WF,Command/Query, WAVEFORM_SETUP,WFSU,Command/Query,

Х

XY_DISPLAY, XYDS, Command/Query,

DSO: TEMPLATE Explanation of the formats of waveforms and their descriptors on the DS0 A descriptor and/or a waveform consists of one or several logical data blocks whose formats are explained below. Usually, complete waveforms are read: at the minimum they consist of the basic descriptor block WAVEDESC a data array block. Some more complex waveforms, e.g. Extrema data or the results of a Fourier transform, may contain several data array blocks. when there are more blocks, they are in the following sequence: the basic descriptor block WAVEDESC auxiliary data array block data array block In the following explanation, every element of a block is described by a single line in the form <byte position> <variable name>: <variable type> ; <comment> where <byte position> = position in bytes (decimal offset) of the variable, relative to the beginning of the block. <variable name> = name of the variable. <variable type> = string up to 16-character name terminated with a null byte 08-bit signed data value bvte word 16-bit signed data value long 32-bit signed data value 32-bit IEEE floating point value float with the format shown below 31 30 . . 23 22 . . . 0 bit position fraction exponent S where s = sign of the fractionexponent = 8 bit exponent efraction = 23 bit fraction f and the final value is (-1)**s * 2**(e-127) * 1.f 64-bit IEEE floating point value double with the format shown below 51 ... 0 63 62 .. 52 bit position S exponent fraction where s = sign of the fractionexponent = 11 bit exponent efraction = 52 bit fraction f and the final value is (-1)**s * 2**(e-1023) * 1.f enumerated value in the range 0 to N represented as a 16-bit data value. The list of values follows immediately. enum The integer is preceded by an _ double precision floating point number, time_stamp for the number of seconds and some bytes for minutes, hours, days, months and year. double seconds (0 to 59) (0 to 59) byte minutes

byte

hours

(0 to 23)

data	byte days (1 to 31) byte months (1 to 12) word year (0 to 16000) word unused There are 16 bytes in a time field. byte, word or float, depending on the
Gata	read-out mode reflected by the WAVEDESC variable COMM_TYPE, modifiable via the remote command COMM_FORMAT.
text	arbitrary length text string
unit_definition	(maximum 160) a unit definition consists of a 48 character ASCII string terminated with a null byte for the unit name.
BLOCK nation of the wave descript	or block wAVEDESC;
DESCRIPTOR_NAME:	string ; the first 8 chars are always WAVEDESC
TEMPLATE_NAME: st	ring
COMM_TYPE: enum	; chosen by remote command COMM_FORMAT

DESC:

======

Explana

- < 0>
- < 16>

< 32> ; chosen by _0 _1 byte word endenum

< 34> COMM_ORDER: enum _0 HIFIRST _1 LOFIRST endenum

The following variables of this basic wave descriptor block specify the block lengths of all blocks of which the entire waveform (as it is currently being read) is composed. If a block length is zero, this block is (currently) not present.

Blocks and arrays that are present will be found in the same order as their descriptions below.

BLOCKS :

< 36> < 40> < 44>	WAVE_DESCRIPTOR: long USER_TEXT: long RES_DESC1: long	; length in bytes of block WAVEDESC ; length in bytes of block USERTEXT ;
ARRAYS :		
< 48>	TRIGTIME_ARRAY: long	; length in bytes of TRIGTIME array
< 52>	RIS_TIME_ARRAY: long	; length in bytes of RIS_TIME array
< 56>	RES_ARRAY1: long	; an expansion entry is reserved
< 60>	WAVE_ARRAY_1: long	; length in bytes of 1st simple ; data array. In transmitted waveform, ; represent the number of transmitted ; bytes in accordance with the NP ; parameter of the WFSU remote command ; and the used format (see COMM_TYPE).
< 64>	WAVE_ARRAY_2: long	; length in bytes of 2nd simple ; data array

<	68>	RES_ARRAY2:	long
<	72>	RES_ARRAY3:	

RES_ARRAY3: long ; 2 expansion entries are reserved

The following variables identify the instrument

THUS TRUTENT INAME. SCI IIIG	< 76	>	INSTRUMENT_	NAME:	string
------------------------------	------	---	-------------	-------	--------

< 92> INSTRUMENT_NUMBER: long

< 96> TRACE_LABEL: string ; identifies the waveform.

<112>	RESERVED1: word		
<114>	RESERVED2: word	; 2 expansion en	tries

The following variables describe the waveform and the time at which the waveform was generated.

<116>	WAVE_ARRAY_COUNT: long	; number of data points in the data ; array. If there are two data ; arrays (FFT or Extrema), this number ; applies to each array separately.
<120>	PNTS_PER_SCREEN: long	; nominal number of data points ; on the screen
<124>	FIRST_VALID_PNT: long	; count of number of points to skip ; before first good point ; FIRST_VALID_POINT = 0 ; for normal waveforms.
<128>	LAST_VALID_PNT: long	; index of last good data point ; in record before padding (blanking) ; was started. ; LAST_VALID_POINT = WAVE_ARRAY_COUNT-1 ; except for aborted sequence ; and rollmode acquisitions
<132>	FIRST_POINT: long	; for input and output, indicates ; the offset relative to the ; beginning of the trace buffer. ; Value is the same as the FP parameter ; of the WFSU remote command.
<136>	SPARSING_FACTOR: long	; for input and output, indicates ; the sparsing into the transmitted ; data block. ; Value is the same as the SP parameter ; of the WFSU remote command.
<140>	SEGMENT_INDEX: long	; for input and output, indicates the ; index of the transmitted segment. ; Value is the same as the SN parameter ; of the WFSU remote command.
<144>	SUBARRAY_COUNT: long	; for Sequence, acquired segment count, ; between 0 and NOM_SUBARRAY_COUNT
<148>	SWEEPS_PER_ACQ: long	; for Average or Extrema, ; number of sweeps accumulated ; else 1
<152> always	POINTS_PER_PAIR: word	; for Peak Dectect waveforms (which
and		; include data points in DATA_ARRAY_1
		; min/max pairs in DATA_ARRAY_2). ; Value is the number of data points for

		; each min/max pair.
<154>	PAIR_OFFSET: word	; for Peak Dectect waveforms only ; Value is the number of data points by ; which the first min/max pair in ; DATA_ARRAY_2 is offset relative to the ; first data value in DATA_ARRAY_1.
<156>	VERTICAL_GAIN: float	
<160>	VERTICAL_OFFSET: float	; to get floating values from raw data : ; VERTICAL_GAIN * data - VERTICAL_OFFSET
<164>	MAX_VALUE: float	; maximum allowed value. It corresponds ; to the upper edge of the grid.
<168>	MIN_VALUE: float	; minimum allowed value. It corresponds ; to the lower edge of the grid.
<172>	NOMINAL_BITS: word	; a measure of the intrinsic precision ; of the observation: ADC data is 8 bit ; averaged data is 10-12 bit, etc.
<174>	NOM_SUBARRAY_COUNT: word	; for Sequence, nominal segment count ; else 1
<176>	HORIZ_INTERVAL: float	; sampling interval for time domain ; waveforms
<180>	HORIZ_OFFSET: double	; trigger offset for the first sweep of ; the trigger, seconds between the ; trigger and the first data point
<188>	PIXEL_OFFSET: double	; needed to know how to display the ; waveform
<196>	VERTUNIT: unit_definitior	n ; units of the vertical axis
<244>	HORUNIT: unit_definition	; units of the horizontal axis
<292> the	HORIZ_UNCERTAINTY: float	; uncertainty from one acquisition to
seconds		; next, of the horizontal offset in
<296>	TRIGGER_TIME: time_stamp	; time of the trigger
<312>	ACQ_DURATION: float	; duration of the acquisition (in sec) ; in multi-trigger waveforms. ; (e.g. sequence, RIS, or averaging)
<316>	RECORD_TYPE: enum _0 single_sweep _1 interleaved _2 histogram _3 graph _4 filter_coefficie _5 complex _6 extrema _7 sequence_obsolet _8 centered_RIS _9 peak_detect endenum	
<318>	PROCESSING_DONE: enum _0 no_processing _1 fir_filter _2 interpolated	

_3	sparsed
_4	autoscaled
_5	no_result
_6	rolling
_7	cumulative
endenum	

<320>	RESERVED5: word	; expansion entry
<322>	RIS_SWEEPS: word	; for RIS, the number of sweeps ; else 1

The following variables describe the basic acquisition conditions used when the waveform was acquired

<324>	TIMEBASE: enum _0 1_ns/div _1 2.5_ns/div _2 5_ns/div _3 10_ns/div _4 25_ns/div _5 50_ns/div _6 100_ns/div _7 250_ns/div _8 500_ns/div _9 1_us/div _10 2.5_us/div _11 5_us/div _12 10_us/div _13 25_us/div _14 50_us/div _15 100_us/div _15 100_us/div _16 250_us/div _17 500_us/div _18 1_ms/div _19 2.5_ms/div _20 5_ms/div _21 10_ms/div _22 25_ms/div _23 50_ms/div _24 100_ms/div _25 250_ms/div _26 500_ms/div _26 500_ms/div _27 1_s/div _28 2.5_s/div _30 10_s/div _31 25_s/div _32 50_s/div _100 EXTERNAL endenum
<326>	VERT_COUPLING: enum _0 DC_50_Ohms _1 ground _2 DC_1MOhm _3 ground _4 AC_1MOhm endenum
<328>	PROBE_ATT: float
<332>	FIXED_VERT_GAIN: enum _0 2_mV/div _1 5_mV/div _2 10_mV/div _3 20_mV/div _4 50_mV/div

	_5 100_mV/div _6 200_mV/div _7 500_mV/div _8 1_V/div _9 2_V/div _10 5_V/div _11 10_V/div endenum			
<334>	BANDWIDTH_LIMIT: enum _0 off _1 on endenum			
<336>	VERTICAL_VERNIER: float			
<340>	ACQ_VERT_OFFSET: float			
<344>	WAVE_SOURCE: enum _0 CHANNEL_1 _1 CHANNEL_2 _2 CHANNEL_3 _3 CHANNEL_4 _9 UNKNOWN endenum			
/00	ENDBLOCK			
DAT1: ARRAY				
Explanation of the data array DAT1. This is an optional secondary data array for special types of waveforms, and it has not been implemented in current DSO, so when you query it,it will always return 'ALL'.				
< 0>	MEASUREMENT: data	; the actual format of a data is ; given in the WAVEDESC descriptor ; by the COMM_TYPE variable.		
/00	ENDARRAY			
=============				
DAT2: ARRAY				
Explanation of This main data waveforms.	the data array DAT2. array is always present.	It is the only data array for		
The data item is repeated for each acquired or computed data point of the first data array of any waveform.				
< 0>	MEASUREMENT: data	; the actual format of a data is ; given in the WAVEDESC descriptor ; by the COMM_TYPE variable.		
/00	ENDARRAY			
ALL: BLOCK Explanation of the ALL. This data is identical to DESC block, followed by DAT1 and DAT2 array.				
ALL is an accepted alias name for the combined arrays DESC,DAT1 and DAT2.				

< 0>	MEASUREMENT_1: data	; data in DATA_ARRAY_1.
< 0>	MEASUREMENT_2: data	; data in DATA_ARRAY_2.
/00	ENDARRAY	
000000	ENDTEMPLATE	