Limited one-Year Warranty
BK Precision Corp. warrants to the original purchaser that its product and the component parts thereof, shall be free from defects in workmanship and materials for a period of one year from the date of purchase.
BK Precision Corp. will, without charge, repair or replace, at its option, defective product or component parts. Returned product must be accompanied by proof of the purchase date and the serial number.
To obtain warranty coverage in the U.S.A., the product must be returned to BK Precision Corp., 1031 Segoia Circle, Pismo Beach, CA 93449 within 15 days from the date of purchase.
Exclusions: This warranty does not apply in the event of misuse or abuse of the product or as a result of unauthorized alterations or repairs. It is void if the serial number is altered, deleted or removed.
BK Precision Corp. shall not be liable for any consequential damages, including without limitation damages resulting from loss of use. Some states do not allow limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific rights and you may have other rights, which vary from state to state.

SAFETY INFORMATION
The following safety information must be observed to ensure maximum personal safety during the use of this meter:
Always respect your meter, test leads and accessories for any sign of damage or abnormality before every use. If cracked cases, test leads, etc., do not attempt to take any measurements. Do not expose the instrument to direct sunlight, extreme temperatures or moisture.

SPECIFICATIONS
- Display: 5½ digit liquid crystal display (LCD) with a maximum reading of 1999.
- Polarity: Automatic, positive implied, negative polarity indication.
- Overrange: (OL) or (OL) is displayed.
- Zero: Automatic.
- Low battery indicator: The "−" is displayed when the battery voltage drops before the opening level.
- Measurement rate: 2 times per second.
- Operating environment: 0°C to 50°C at < 70% relative humidity.
- Storage temperature: −20°C to 60°C, 0 to 80°F.
- Battery removed from meter.
- Temperature coefficients: 0°C to 18°C, 20°F to 64°F.
- Altitude: 6061.7 Feet (2000m).
- Power: Single standard 9-volt battery, NEDA 1604, HS 906, 6F22.
- Life: 200 hours typical with carbon-zinc.
- Dimensions (HxWxD): 142mm x 66mm x 47mm.
- Weight: Approx. 204g(7.2oz) including battery.
- Accessories: One pair test leads, 9V battery (installed) and Operating Instructions.

DC VOLTS
- Range: 200mV, 2V, 20V, 200V, 2000V.
- Resolution: 10mV.
- Accuracy: ±1.25% + 4 digits.
- Input impedance: 10MO.
- Overload protection: 600VDC or AC rms 560VDC/350VAC rms 15 second on 2000V range.

AC VOLTS
- (50Hz - 500Hz)
- Range: 200mV, 2V, 20V, 200V.
- Resolution: 10mV.
- Accuracy: ±1.25% + 4 digits.
- Input impedance: 10MO.
- Overload protection: 600VDC or AC rms 350VDC/200VAC rms 15 second on 2000V range.

DC CURRENT
- Range: 20mA, 200mA, 20A, 2000A.
- Accuracy: ±1.2% + 0.05.
- Overload protection: 600VDC or AC rms 350VDC/200VAC rms 15 second on 2000V range.

AC CURRENT
- (50Hz - 500Hz)
- Range: 20mA, 200mA, 20A.
- Accuracy: ±1.2% + 4 digits.
- Overload protection: 600VDC or AC rms 350VDC/200VAC rms 15 second on 2000V range.

NON-CONTACT VOLTAGE INDICATOR
- Detect voltages from 70V to 480VAC 50Hz - 60Hz.

RESISTANCE
- Range: 200Ω, 2MΩ, 20MΩ, 200MΩ.
- Resolution: 0.1mΩ/20mΩ.
- Accuracy: ±1.5% + 4 digits.
- Input impedance: 10MO.
- Overload protection: 600VDC or AC rms 350VDC/200VAC rms 15 second on 2000V range.

OPERATION
Before taking any measurements, read the Safety Information section. Always examine the instrument for damage, contamination (excessive dirt, grime, etc.) and defects. Examine the test leads for cracked or frayed insulation. If any abnormal conditions exist do not attempt to make any measurements.

Voltage Measurements
1. Connect the red test lead to the "+" jack and the black test lead to the "COM" jack.
2. Set the Function/Range switch to the desired Voltage type (AC or DC) and range. If the magnitude of voltage is not known, set scale in the highest range and values until a satisfactory reading is obtained.
3. Connect the test leads to the device or circuit being measured.
4. For dc, a "−" sign is displayed for negative polarity. Positive polarity is implied.

Current Measurements
1. Set the Function/Range switch to the desired current.
2. For current measurements less than 200mA, connect the red test lead to the 10A jack and the black test lead to the "COM" jack.
3. For current measurements of greater than 200mA, connect the red test lead to the 10A jack and the black test lead to the "COM" jack.
4. Remove probes from the circuit under test and open the normal circuit path where the measurement is to be made. Contact the meter in series with the circuit.
5. Apply power and read the value of the display.
Resistance Measurements
1. Turn off any power to the meter to be measured. Discharge all capacitance. Any voltage present during a resistance measurement will cause inaccurate readings and could damage the meter or endanger personnel or equipment.
2. Insert the BLACK and RED test leads into the COM and (Ω) input terminals respectively.
3. Select the desired range (Ω) range.
4. Connect the BLACK and RED test probe tips to the circuit or device under test, making sure it is deenergized first.
5. The test results will be displayed as an overload condition.
6. Turn off any power to the circuit under test. External voltages across the components may result in reading.
7. Connect the test leads to the two points at which continuity is to be tested. The meter will read if the resistance is less than approximately 10Ω.

Non-Contact Voltage Indicator
1. Remove the test leads from the meter. Turn the "X" knob at any selected Function/Range. Then the display will be dark and the LED will light if a power source or a charged circuit is detected.
2. Aim the sensor of the meter (located at the top of the meter) into the object to be detected. The meter will display a "<" symbol if a power source or a charged circuit is detected.

MAX Maximum Reading Mode
This measurement function is used to measure the maximum value of a signal. It is useful for AC/DC voltage, AC/DC current, resistance, and capacitance measurements.

MAX Maximum Function:
1. Turn off any power to the meter to be measured. Discharge all capacitance. Any voltage present during a resistance measurement will cause inaccurate readings and could damage the meter or endanger personnel or equipment.
2. Insert the BLACK and RED test leads into the COM and (Ω) input terminals respectively.
3. Select the desired range (Ω) range.
4. Connect the BLACK and RED test probe tips to the circuit or device under test, making sure it is deenergized first.
5. The test results will be displayed as an overload condition.
6. Turn off any power to the circuit under test. External voltages across the components may result in reading.
7. Connect the test leads to the two points at which continuity is to be tested. The meter will read if the resistance is less than approximately 10Ω.

Non-Contact Voltage Indicator
1. Remove the test leads from the meter. Turn the "X" knob at any selected Function/Range. Then the display will be dark and the LED will light if a power source or a charged circuit is detected.
2. Aim the sensor of the meter (located at the top of the meter) into the object to be detected. The meter will display a "<" symbol if a power source or a charged circuit is detected.

MAX Maximum Reading Mode
This measurement function is used to measure the maximum value of a signal. It is useful for AC/DC voltage, AC/DC current, resistance, and capacitance measurements. To use this function, select the function range and press the MAX button. When the function is set, the MAX button will be illuminated. To change the range, press the MAX button again. The MAX value is held in memory for a long period. To exit the MAX mode, press the MAX button once again.

Fuse Replacement
If no current measurements are possible, check for a blown overload protection fuse. This is an important safety precaution for the entire instrument. Typically, a blown fuse will be identified by a blown fuse. To replace a fuse, remove the fuse from the back of the meter and open the fuses. Insert the new fuse with the original type 0.1A/250V, fast acting fuse. Replace F1 only with the original type 0.1A/250V, fast acting fuse.