

Programmable DC Electronic Loads

8600/B Series

2U half-rack 3U

\$9,610 2.729 10.228 (cr. 7.28)

6U

The 8600/B Series programmable DC electronic loads provide the performance of modular system DC electronic loads in a compact benchtop form factor. With fast transient operation speeds and high 16-bit measurement resolution, these standalone DC loads can be used for testing and evaluating a variety of DC sources such as DC power supplies, DC-DC converters, batteries, battery chargers, and photovoltaic arrays.

The DC loads can operate in constant current (CC), constant voltage (CV), constant resistance (CR), or constant power (CW) mode and be configured to provide a dynamically changing load to the DC source with fast load switching times. Versatile internal, external, and remote triggering options allow the dynamic load behavior to be synchronized with other events.

Increase productivity by saving your test parameters into any one of the IOO memory areas for quick system recall. All load parameters such as voltage, current, slew rate, and width can be set via the front panel or programmed remotely. The 8600/B Series provides standard USB (USBTMC-compliant) and RS232 interfaces standard for remote communication. GPIB is available as an option on select models.

To ensure the reliability of your testing, the 8600/B Series provides a power-on system self-test and numerous protection features: overtemperature (OTP), overvoltage (OVP), overcurrent (OCP), overpower (OPP), and local/remote reverse voltage (LRV/RRV) protection.

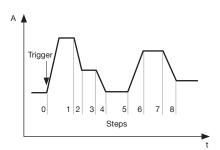
Special applications

The 8600/B Series provides a built-in battery test mode to measure the ampere-hour (Ah) characteristic of a battery and a unique CR-LED mode to simulate the loading behavior of a typical LED.

Features and Benefits

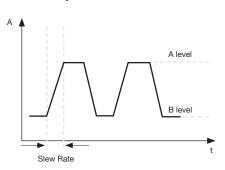
- Voltage range up to 500 V
- Current range up to 720 A
- CC/CV/CR/CW operating modes
- 16-bit voltage and current measurement system
- Transient mode up to 25 kHz in CC mode
- List mode function

Features and Benefits (cont.)


- Store and recall up to 100 setups
- Adjustable slew rate in CC mode
- Flexible triggering options via front panel, external input, timer, or bus
- Built-in battery test function with voltage level, capacity level, and timer stop conditions
- Test modes to validate the OCP/OPP protection functions of a power supply
- CR-LED mode to simulate the loading behavior of typical LEDs
- Remote sense
- Analog current control and monitoring
- Thermostatically controlled fan
- Standard USB (USBTMC-compliant) and RS232 interfaces supporting SCPI commands for remote control
- GPIB optional on select models
- OVP/OCP/OPP/OTP including local and remote reverse voltage (LRV/RRV) protection

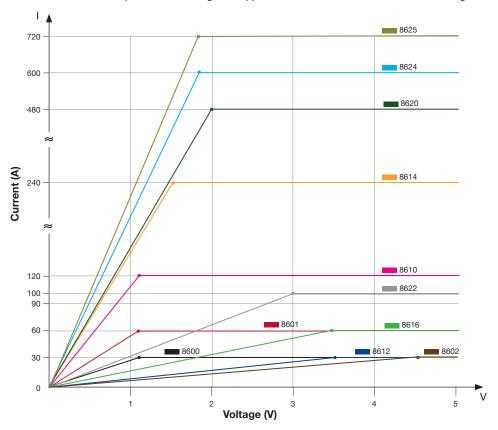
Model	8600/B*	8601/B*	8602/B*	8610/B*	8612/B*	8614/B*	8616	8620	8622	8624	8625
Power	150 W	250 W	200 W	750 W	750 W	1500 W	1200 W	3000 W	2500 W	4500 W	6000 W
Operating Voltage	0 – I20 V	0 – I20 V	0 – 500 V	0 – I20 V	0 – 500 V	0 – I20 V	0 – 500 V	0 – I20 V	0 – 500 V	0 – I20 V	0 – I20 V
Rated Current	0 – 30 A	0 – 60 A	0 – I5 A	0 – I20 A	0 – 30 A	0 – 240 A	0 – 60 A	0 – 480 A	0 – 100 A	0 – 600 A	0 – 720 A
Form Factor		2U half-rack		3U					6U		

^{*}Model numbers with suffix B (86xxB) do not include a GPIB interface. See ordering information on page 9 for details.

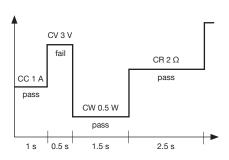

Flexible operation

List mode

List mode lets you generate more complex sequences of input changes with several different levels. Up to 7 groups of list files can be saved. Each list can contain up to 84 steps with a minimum width time of 20 μs per step.


Transient operation

Transient operation enables the module to periodically switch between two load levels. A power supply's regulation and transient characteristic can be evaluated by monitoring the supply's output voltage under varying combinations of load levels, frequency, duty cycle, and slew rate. Transient operation can simulate these conditions.


Low voltage operation

The 8600/B Series can operate at low voltages for applications such as fuel cell and solar cell testing.

Typical m	ninimum o	perating v	oltage at	full scale o	urrent					
8600	8601	8602	8610	8612	8614	8616	8620	8622	8624	8625
1.1 V	1.1 V	4.5 V	1.2 V	3.6 V	1.5 V	3.6 V	2 V	3 V	1.8 V	1.8 V

Automatic test mode

The 8600/B Series can execute multiple test sequences in automatic test mode. Up to 100 different sequences can be linked to run steps of various operating modes and loading conditions. Each sequence can also be programmed with upper and lower limit Pass/Fall criteria. When applied in production testing, you can easily judge whether the test parameters of your devices are within the specification limits and adjust your process according to the Pass/Fail verdict.

CR-LED mode

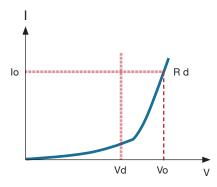


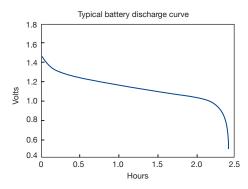
Figure - LED I-V Curve

Vd = Forward voltage of the LED

Rd = LED's operating resistance

Vo = Operating voltage across the LED

Io = Operating current across the LED

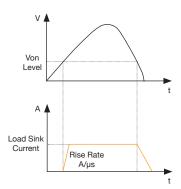

Use the load's unique CR-LED operating mode to test LED drivers. This function allows users to configure the LED's operating resistance and forward voltage along with the voltage range (same as CR operation) to simulate the loading behavior of typical LEDs.

Remote control and programming

Powerful communication interfaces

The 8600/B Series provides standard USB and RS232 interfaces for remote communication. GPIB is available as an option for select models. These interfaces offer SCPI and USBTMC standard communication protocols to control your electronic load from a PC.

Battery test function



The built-in battery test function uses CC mode to calculate the battery capacity using a fixed current load discharge. Users can specify cut-off voltage level, capacity level, and time stop conditions.

External analog programming and monitoring interface

In addition to front panel and remote interface control, current values can also be programmed with an analog control signal. The electronic loads can be externally controlled from zero to full scale with a 0-10 V input signal. A BNC output is available on the rear for monitoring the current with a 0-10 V output signal.

Voltage-on (Von) latch operation

Control the input turn on state for the DC electronic load by configuring the Von latch function. This can be used to start and stop discharging of a battery or other power source at a specified voltage level.

Communication Select Communication

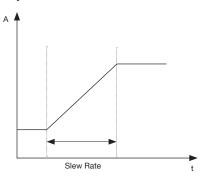
Application software

PC software is provided for front panel emulation, generating and executing test sequences, or logging measurement data without the need to write source code. Additionally, this application software integrates with NI Data Dashboard for LabVIEW™ apps, which allows users to create a custom dashboard on a tablet computer or smartphone to remotely monitor 8600/B Series DC loads via this PC software.

- Remote monitoring on iOS, Android or Windows 8 compatible tablets or smartphones via NI Data Dashboard for LabVIEWTM apps
- Log voltage, current, and power values with timestamp
- Run transient operation and list mode programs remotely
- Create an unlimited number of external list files to be executed from PC memory

Built-in rise and fall time measurement

8600/B Series display


20.001U
1.9992H
39.99W
0.00405 CC= 2.000A

Oscilloscope display

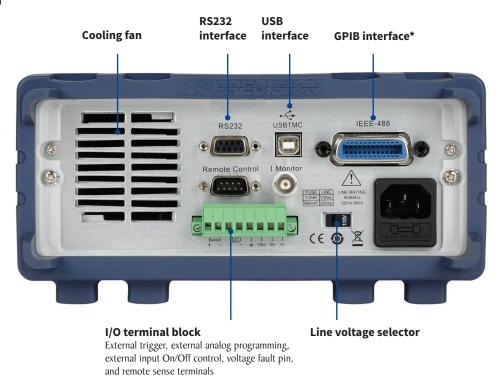
AT=4.00ms
VAT=250.0Hz
X2 = 3.76ms
X1 = -240.0 µs
AV= 16.0V
Y2 = 18.0V
Y1 = 2.00V

The 8600/B Series can measure the rise or fall time from a specified start and stop voltage level of the measured input without the need for an oscilloscope. This function can also be used as an internal timer to count how long the input has been enabled.

Adjustable slew rate

In CC mode, users can control the rate or slope of the change in current in a transient response test. Set the slew rate to as slow as 0.001 A/ms or as fast as 2.5 A/µs depending on the model and selected current range.

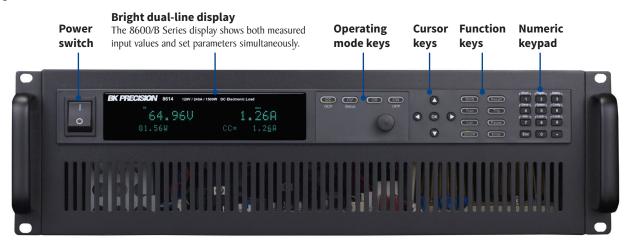
► Models 8600/B, 8601/B & 8602/B

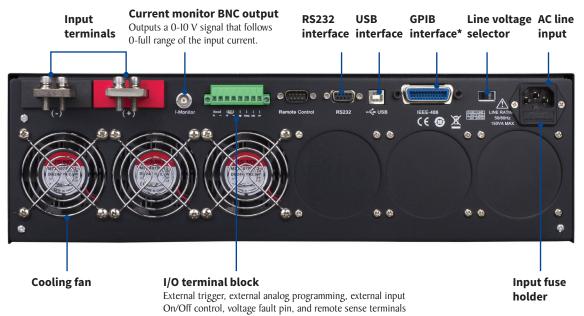

Intuitive user interface

The numeric keys and rotary knob provide a convenient interface for setting the operating mode and desired current, voltage, and resistance levels quickly and precisely.

Load input terminal

Numeric keypad Function keys Cursor keys


Rear panel


^{*}GPIB optional on select models. See ordering information on page 9 for details.

▶ Models 8610/B, 8612/B, 8614/B, 8616, 8620, 8622 (3U)

Front panel

Rear panel

► Models 8624 & 8625 (6U)

6U form factor models use the same front panel interface as the 3U models

The rear panel configurations of 6U and 3U models are identical, however the number of fans installed varies by model

^{*}GPIB optional on select models. See ordering information on page 9 for details.

Specifications

Mo	del	8600/B	8601/B	8602/B			
Input ratings		·		!			
Input v	oltage	0 – I20 V	0 – I20 V	0 – 500 V			
Input	Low	0 – 3 A	0 – 6 A	0 – 3 A			
current	High	0 – 30 A	0 – 60 A	0 – I5 A			
Input power		150 W	250 W	200 W			
Minimum	Low	0.11 V at 3 A	0.18 V at 6 A	IV at 3 A			
operating voltage	High	I.I V at 30 A	I.I V at 60 A	4.5 V at 15 A			
CV mode							
Dango	Low	0.1 –	18 V	0.1 – 50 V			
Range	High	0.1 –	120 V	0.1 – 500 V			
D 1.0	Low		I mV				
Resolution	High		I0 mV				
	Low	±(0.05%+ 0.02% FS)	±(0.025%+ 0.05% FS)	±(0.05%+ 0.025% FS)			
Accuracy	High	±(0.05%+ 0.025% FS)	±(0.025%+ 0.05% FS)	±(0.05%+ 0.025% FS)			
CC mode							
D	Low	0 – 3 A	0 – 6 A	0 – 3 A			
Range	High	0 – 30 A	0 – 60 A	0 – I5 A			
D. Le	Low						
Resolution	High		I mA	I mA			
Λ	Low	=)				
Accuracy	High	=)				
CR mode							
Danga	Low	0.05 Ω	0.3 Ω – 10 Ω				
Range	High						
Resolu	ıtion	I6 bit					
Accuracy	Low	0.01%+0.08 S (I2.5 Ω)					
(I>10% of range)	High	0.01%+0.0008 S (1250 Ω)					
CW mode							
Ran	ge	150 W	250 W	200 W			
Resolu	ıtion						
Accu	racy	0.1% + 0.1% FS	0.1% + 0.1% FS				
Transient mod	le (CC mode)						
TI & 1	Γ2 ^(I)	20 μs – 3600 s / Resolution: 10 μs					
Accu	racy	5 μs + 100 ppm					
al p (2)	Low	0.001-2	.5 A/ms	0.00I-I A/ms			
Slew Rate (2)	High	0.001-2	2.5 A∕µs	0.00I-I A/μs			

 $^{^{\}mbox{\scriptsize (I)}}$ Fast pulse trains with large transitions may not be achievable.

⁽²⁾ The slew rate specifications are not warranted, but are descriptions of typical performance. The actual transition time is defined as the time for the input to change from 10% to 90%, or vice versa, of the programmed current values. In case of very large load changes, e.g. from no load to full load, the actual transition time will be larger than the expected time. The load will automatically adjust the slew rate to fit within the range (high or low) that is closest to the programmed value.

Readback voltage	ge							
Tiouabaon voita	Low	0 – 18 V	0 – 18 V	0 – 50 V				
Range	High	0 – I20 V	0 – I20 V	0 – 500 V				
	Low	0.120 (I mV					
Resolution	High		IO mV					
Accura	Accuracy							
Readback curre			±(0.05%+0.05% FS)					
Headback curre	Low	0 – 3 A	0 – 6 A	0 – 3 A				
Range	High	0 – 30 A	0 – 60 A	0 – I5 A				
	Low	0.01 mA	0.1 mA	0.01 mA				
Resolution		0.0						
	High	0.1 mA	I mA	0.1 mA				
Accurac	су	±(0.05%+ 0.05% FS)	±(0.05%+ 0.1% FS)	±(0.05%+ 0.05% FS)				
Readback power	r							
Range	!	150 W	250 W	200 W				
Resoluti	on		IO mW					
Accuracy		±(1%+0.1% FS)	±(0.2%+0.2% FS)	±(0.1%+0.1% FS)				
Protection rang	e (typical)							
OPP		150 W	250 W	200 W				
OCD	Low	3.3 A	6.6 A	3.3 A				
OCP	High	33 A	66 A	16.5 A				
OVP	-	120 V	120 V	500 V				
OTP		185 °F (85 °C)						
Short circuit (ty	pical)							
G (GG)	Low	3.3 A	6.6 A	3.3 A				
Current (CC)	High	33 A	66 A	16.5 A				
Voltage (CV)	0 V						
Resistance		35 mΩ	300 mΩ					
General (typical)							
Input terminal i	mpedance	150 kΩ 300 kΩ I MΩ						
AC inpi	ut	II0 V/220 V ±10%, 50/60 Hz						
Operating tem	perature	32 °F to 104 °F (0 °C to 40 °C)						
Storage temp	erature	14 °F to 140 °F (-10 °C to 60 °C)						
Humidi	ty	Indoor use, ≤ 95%						
Safety		EN61010-1:2001, EU Low Voltage Directive 2006/95/EC						
Electromag compatib		Meets EMC Directive 2004/108/EC, EN 61000-3- 2:2006, EN 61000-3-3:1995+A1:2001+A2:2005 EN 61000-4-2/-3/-4/-5/-6/-11, EN 61326-1:2006						
Dimensions (W	' x H x D)	8.5" x 3.5" x 15.2" (218 x 90 x 387 mm)						
Weigh	t	9.9 lbs (4.5 kg)						
Warran			3 Years					
Standard acco	essories	User manual,	power cord, certifica	te of calibration				
Optional acce	essories	TLPWRI high current test leads, IT-EISI rackmount kit (models 8600/B, 8601/B, and 8602/B only)						

Specifications (cont.)

Mode	el	8610/B	8612/B	8614/B	8616	8620	8622	8624	8625			
Input ratings		1			1	'	!	1				
Input volt	age	0 – I20 V	0 – 500 V	0 – I20 V	0 – 500 V	0 – I20 V	0 – 500 V	0 – I20 V	0 – I20 V			
Input	Low	0 – I2 A	0 – 3 A	0 – 24 A	0 –6 A	0 – 48 A	0 – I0 A	0 – 60 A	0 – 72 A			
current	High	0 – I20 A	0 – 30 A	0 – 240 A	0 –60 A	0 – 480 A	0 – 100 A	0 – 600 A	0 – 720 A			
Input por	ver	750) W	I500 W	1200 W	3000 W	2500 W	4500 W	6000 W			
Minimum	Low	0.12 V at 12 A	0.36 V at 3 A	0.15 V at 24 A	0.36 V at 6 A	0.2 V at 48 A	0.3 V at 10 A	0.18 V at 60 A	0.18 V at 72 A			
operating voltage	High	I.2 V at I20 A	3.6 V at 30 A	I.5 V at 240 A	3.6 V at 60 A	2 V at 480 A	3 V at 100 A	18 V at 600 A	I.8 V at 720 A			
CV mode		I	I.	l	I	ı	I					
	Low	0.I – I8 V	0.1 – 50 V	0.I – I8 V	0.1 – 50 V	0.I – I8 V	0.1 – 50 V	0.I – I8 V	0.I – I8 V			
Range	High	0.I – I20 V	0.1 – 500 V	0.I – I20 V	0.1 – 500 V	0.I – I20 V	0.1 – 500 V	0.I – I20 V	0.1 – I20 V			
B 1	Low		I mV	1	I mV	I mV	I mV	I mV	I mV			
Resolution	High		IO mV		IO mV	I0 mV	I0 mV	IO mV	I0 mV			
Accuracy	Low	±(0.025% -	+ 0.05% FS)	±(0.025%+ 0.025% FS)	±(0.025%+ 0.05% FS)		±(0.025% -	+ 0.05% FS)				
	High											
CC mode												
Range	Low	0 – I2 A	0 – 3 A	0 – 24 A	0 – 6 A	0 – 48 A	0 – I0 A	0 – 60 A	0 – 72 A			
	High	0 – I20 A	0 – 30 A	0 – 240 A	0 – 60 A	0 – 480 A	0 – 100 A	0 – 600 A	0 – 720 A			
Resolution	Low	I mA	0.1 mA	I mA	0.1 mA	I mA	I mA	I mA	I mA			
	High	I0 mA	I mA	I0 mA	I mA	I0 mA	IO mA	I0 mA	I0 mA			
Low		±(0.05%+ 0.1% FS)	±(0.05%+ 0.05% FS)	±(0.05%+ 0.1% FS)	±(0.05%+ 0.05% FS)	±(0.025%+ 0.05% FS)						
Accuracy	High	h $\pm (0.05\% + \pm (0.025\% + 0.05\% + 0.05\% + \pm (0.025\% + 0.05\% $				+ 0.05% FS)						
CR mode												
Panga	Low	$0.02~\Omega - 10~\Omega$	0.15 Ω – 10 Ω	$0.01~\Omega - 10~\Omega$	$0.01~\Omega - 10~\Omega$	0.01 Ω – 10 Ω	$0.03~\Omega - 10~\Omega$	$0.01~\Omega - 10~\Omega$	$0.005~\Omega-10$			
Range	High	10 Ω - 7.5 kΩ										
Resoluti	on				16	bit						
Accuracy	Low				0.01%+0.0	8 S (I2.5 Ω)						
(I>I0% of range)	High	0.01%+0.0008 S (1250 Ω)										
CW mode												
Range		750 W		1500 W	1200 W	3000 W	2500 W	4500 W	6000 W			
Resolution		10	IO mW									
Accuracy			0.2% + 0.2% FS									
Transient mo		mode)										
TI & T2	(1)				20 μs – 3600 s /	Resolution: 10 µs						
Accura	у				5 μs + I	00 ppm						
Clew Pata (2)	Low	0.00I-0.25 A/μs	0.000I-0.I A/μs	0.00I-0.25 A/μs	0.000I-0.I A/μs	0.00I-0.25 A/μs	0.00I-0.I A/μs	0.00I-0.25 A/μs	0.00I-0.25 A/			
Slew Rate (2)	High	0.0I-2.5 A/μs	0.00I-I A/μs	0.0I-2.5 A/μs	0.00I-I A/μs	0.0I-2.5 A/μs	0.0I-I A/μs	0.01-2.5 A/μs	0.0I-2.5 A/μs			

 $^{^{\}mbox{\scriptsize (I)}}$ Fast pulse trains with large transitions may not be achievable.

⁽²⁾ The slew rate specifications are not warranted, but are descriptions of typical performance. The actual transition time is defined as the time for the input to change from 10% to 90%, or vice versa, of the programmed current values. In case of very large load changes, e.g. from no load to full load, the actual transition time will be larger than the expected time. The load will automatically adjust the slew rate to fit within the range (high or low) that is closest to the programmed value.

Specifications (cont.)

Mode	el	8610/B	8612/B	8614/B	8616	8620	8622	8624	8625			
Readback vol	tage			,			,					
_	Low	0 – 18 V	0 – 50 V	0 – 18 V	0 – 50 V	0 – 18 V	0 – 50 V	0 –	18 V			
Range	High	0 – I20 V	0 – 500 V	0 – I20 V	0 – 500 V	0 – I20 V	0 – 500 V	0 – I20 V	0 – I20 V			
_	Low	0.1 mV	I mV	0.1 mV		1	I mV	ı				
Resolution	High	I mV	IO mV	I mV			IO mV					
Accura	-		±(0.05% +	- 0.05% FS)			±(0.025% +	0.025% FS)				
Readback cur	rent											
	Low	0 – I2 A	0 – 3 A	0 – 24 A	0 – 6 A	0 – 48 A	0 – I0 A	0 – 60 A	0 – 72 A			
Range	High	0 – I20 A	0 – 30 A	0 – 240 A	0 – 60 A	0 – 480 A	0 – 100 A	0 – 600 A	0 – 720 /			
	Low	I mA	0.I mA	I mA	0.I mA		l r	mA				
Resolution	High	I0 mA	I mA	I0 mA	I mA		10	mA				
Accura	_	±(0.05%+ 0.1% FS)	±(0.05%+ 0.05% FS)	±(0.05%+ 0.1% FS)	±(0.05%+ 0.05% FS)	±(0.05%+ 0.1% FS)	±(0.05%+ 0.05% FS)		05%+ 6 FS)			
Readback pov	wer					'		ı				
Range		750) W	I500 W	1200 W	3000 W	2500 W	4500 W	6000 W			
Resoluti		10	mW		I	100	mW	I				
Accura	icv		±(0.2% + 0.2% FS)									
Protection rar)				<u> </u>						
OPP) W	1550 W	1250 W	3050 W	2550 W	4550 W	6050 W			
ОСР	Low	13.2 A	3.3 A	26.4 A	6.6 A	26.4 A	II A	66 A	79.2 A			
	High	132 A	33 A	264 A	66 A	264 A	IIO A	660 A	792 A			
OVP		I30 V	530 V	130 V	530 V	130 V	530 V	130 V	130 V			
OTP			185 °F (85 °C)									
Short circuit ((
,	Low	13.2 A	3.3 A	26.4 A	6.6 A	52.8 A	II A	66 A	79.2 A			
Current (CC)	High	132 A	33 A	264 A	66 A	528 A	IIO A	660 A	793 A			
Voltage (-		3371	20171		V		00071	,,,,,,,,			
Resistance		10 mΩ	I20 mΩ	6 mΩ	60 mΩ	5 mΩ	30 mΩ	$3~\mathrm{m}\Omega$	2.5 mΩ			
General (typic	, ,	<u>-</u>	.202	J <u></u>	002	J2	362	J -1	2.52			
nput terminal i		300 kΩ	ΙΜΩ	300 kΩ	ΙΜΩ	300 kΩ	ΙΜΩ	300 kΩ	300 kΩ			
AC inp		110 V/220 V ±10%, 50/60 Hz										
Operating ten		32 °F to 104 °F (0 °C to 40 °C)										
Storage temp		14 °F to 140 °F (-10 °C to 60 °C)										
Humidi		Indoor use, ≤ 95%										
Safety		EN61010-1:2001, EU Low Voltage Directive 2006/95/EC										
Electromag			Meets FM)-3-3:1995+AI:200I+	A2·2005				
compatib			WICCIS EI			/-6/-II, EN 6I326-I:2						
Dimensions (W x H x D)		17.3" x 5.3" x 22.5" (439 x 133.3 x 580 mm)							17.3" x 10.5" x 23.2" (439 x 266 x 590 mm)			
Weigh	nt	54 lbs (24.6 kg) 142 lbs (64.4 kg)										
Warran	nty				3 Y	'ears						
Standard acc	essories			User	manual, power cord	d, certificate of calib	ration					
Optional acc	essories				TLPWRI high c	urrent test leads						

Programmable DC Electronic Loads 8600/B Series

Ordering Information

8600/B Series DC Electronic Loads

With GPIB	Without GPIB
8600	8600B
8601	8601B
8602	8602B
8610	8610B
8612	8612B
8614	8614B
8616	-
8620	-
8622	-
8624	-
8625	-

9

v042524 bkprecision.com

About B&K Precision

For more than 70 years, B&K Precision has provided reliable and value-priced test and measurement instruments worldwide.

Our headquarters in Yorba Linda, California houses our administrative and executive functions as well as sales and marketing, design, service, and repair. Our European customers are most familiar with B&K through our French subsidiary, Sefram. Engineers in Asia know us through our B+K Precision Taiwan operation. The independent service centers in Singapore and Brasil service customers in Singapore, Malaysia, Vietnam, Indonesia and South America, respectively.

Quality Management System

B&K Precision Corporation is an ISO9001 registered company employing traceable quality management practices for all processes including product development, service, and calibration.

ISO9001:2015

Certification body NSF-ISR Certificate number 6Z241-IS8

Registered to ISO 9001

Video Library

View product overviews, demonstrations, and application videos in English, Spanish and Portuguese.

http://www.youtube.com/user/BKPrecisionVideos

Product Applications

Browse all of our supported product and mobile applications.

http://bkprecision.com/product-applications